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1. Introduction

Crystalline organic conductors have been among
the most exciting objects in solid state physics and
chemistry over the last two decades, providing a
laboratory not only for studying virtually all the
ground states known in condensed matter physics but
also for discovering new ones.

Perhaps the most remarkable feature common to
the organic conductors is the reduced dimensionality
of the electronic band structure caused by the specific
character of their crystal structure.1 The basic struc-
tural units of these materials are partially charged
flat organic molecules, for example, tetramethyltetra-
selenafulvalene, TMTSF, or bis(ethylenedithio)tetra-
thiafulvalene, BEDT-TTF, or similar donor/acceptor
molecules. These units are packed in stacks or in
layers separated from each other by counterions. The
significant overlap between the molecular π orbitals
and the fractional charge transfer from the molecules
to the counterions lead to formation of partially filled
conduction bands. Due to the chainlike or layered
character of the intermolecular overlapping, the
conductivity is highly anisotropic, so that the mate-
rial can be considered as a quasi-one-dimensional
(q1D) or a quasi-two-dimensional (q2D) conductor.
Correspondingly, the Fermi surface (FS) of such a
material is represented by a pair of open, almost flat
sheets perpendicular to the direction of the highest
conductivity (q1D case, Figure 1a, ref 2) or a cylinder
(q2D case, Figure 1b, ref 3) which is only slightly
warped in the direction along its axis parallel to the
least conducting direction. In the latter case, the cross
section of the cylinder may exceed the size of the first
Brillouin zone that gives rise (see, e.g., ref 4) to a
multiple connected FS consisting of a smaller cylin-
der and a pair of open sheets (Figure 1c and d, refs
5 and 6, respectively) or of several cylindrical FSs of
smaller cross sections (Figure 1e, ref 7).

The reduced dimensionality combined with rela-
tively low concentrations of charge carriers gives rise
to strong electron correlations and numerous insta-
bilities of the normal metallic state. This leads to very
rich phase diagrams characterizing different families
of the organic conductors or, sometimes, even single
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compounds. An illustrative example is the phase
diagram of the series of q1D radical cation salts
(TMTTF)2X/(TMTSF)2X (where X is an inorganic
anion such as PF6

-, AsF6
-, ClO4

-, Br-) which con-
tains various electronic states ranging from spin-
Peierls insulating and Luttinger liquid states to
superconductivity (for a review, see, e.g., refs 8-10).
Among layered, or q2D, compounds, one should
mention first of all the family of the highest-Tc
organic conductors κ-(BEDT-TTF)2X (with X ) Cu-
[N(CN)2]Cl, Cu[N(CN)2]Br, and Cu(NCS)2)11-13 and
magnetic-field-induced superconductors (BETS)2-
FexGa1-xY4 (Y ) Cl, Br)14-16 also exhibiting fascinat-
ing electronic phase diagrams.

Of course, the knowledge of the electronic band
structure, in particular, of the FS properties is
necessary for understanding the origin of various
ground states realized in these materials. Tight-
binding band structure calculations using the ex-
tended Hückel scheme have been amazingly success-
ful in describing gross features of the FS and provided
a good basis for qualitative understanding the rela-
tion between crystal structures and electronic prop-
erties in many cases (see, e.g., refs 4, 17, and 18).
However, such calculations, relying on empirical
parameters, do not warrant a priori a correct result.
Furthermore, they are unable to describe quantita-
tively fine features of the band structure; for example,
they basically ignore such an important characteristic
of layered conductors as the interlayer coupling.
Precise first-principles band structure calculations
are still a challenging computational problem, due
to large unit cells and mixed bonding types, al-
thoughconsiderable progress has recently been dem-
onstrated.19,20 In this situation, experimental studies
aimed to check the theoretical predictions and pro-
vide reliable quantitative information on the FS
properties are of primary importance.

High magnetic fields have been known for many
years as one of the most powerful tools for exploring
the FSs of conventional metals.21-23 The discovery,
in 1988, of the magnetic quantum oscillations in the
salts κ-(BEDT-TTF)2Cu(NCS)2

5 and â-(BEDT-TTF)2-
IBr2

24 has proved this tool to be applicable to the
organic conductors and triggered tremendous activi-
ties in this direction. It was soon found that not only
the quantum oscillations but also the semiclassical
magnetotransport experiments can be extremely
useful for studying the FSs of these materials. A
comprehensive survey of the FS studies of the organic
conductors performed up to the middle of the 1990s
is presented in ref 25. Some recent interesting cases
of the application of the high-magnetic-field tech-
niques, in particular to the salts κ-(BEDT-TTF)2X and
R-(BEDT-TTF)2MHg(SCN)2 (M ) K, Tl, Rb, NH4),
have been reviewed in ref 26. Nowadays, high-field
experiments have become a necessary ingredient to
complex characterization of newly synthesized com-
pounds. They are also extensively used for gaining a
deeper insight into electronic properties of already
known materials.

The low-dimensional character of the organic con-
ductors leads to important consequences in their
response to a magnetic field. In fact, numerous
drastic deviations from the conventional three-
dimensional (3D) behavior and even qualitatively
new effects have been found in these materials.
Certainly, one has to understand the nature of these
effects in order to correctly interpret the experimental
data and obtain useful information.
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Figure 1. Typical examples of the Fermi surfaces of
organic conductorsstwo-dimensional (parallel to the highly
conducting plane) view: (a) (TMTSF)2AsF6 (Reproduced
with permission from ref 2. Copyright 1983 EDP Sciences.);
(b) â-(BEDT-TTF)2IBr2 (data taken from ref 3); (c) κ-(BEDT-
TTF)2Cu(NCS)2 (Reproduced with permission from ref 5.
Copyright 1988 American Physical Society); (d) R-(BEDT-
TTF)2KHg(SCN)4 (Reproduced with permission from ref 6.
Copyright 1996 EDP Sciences); (e) (BEDO-TTF)2ReO4‚H2O
(data taken from ref 7). Brillouin zone boundaries and the
principal axes of the reciprocal lattice are also shown.
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This article aims to review the physical origin of
specific high-magnetic-field phenomena emerging
already in the normal metallic state of the organic
conductors owing to their extremely high anisotropy
and to illustrate how these phenomena can be used
for studying the electronic system. The consideration
is focused on layered, that is, q2D, compounds;
however, some effects related to open FS sheets are
also included, since such sheets are often met as a
part of the FS in the layered conductors. In section 2
the behavior of the semiclassical magnetoresistance
will be discussed. A number of novel effects, in
particular related to the field orientation, will be
presented. It will be shown that rather simple
experiments may give important quantitative infor-
mation on the exact geometry of the FS and on the
anisotropic properties of the conduction system. Sec-
tion 3 is devoted to quantum oscillations of the
magnetization (de Haas-van Alphen, dHvA, effect)
and of the resistivity (Shubnikov-de Haas, SdH,
effect). As in conventional 3D metals, these oscilla-
tions have been widely used in studies of organic
conductors. It turns out, however, that the extremely
high anisotropy may lead to substantial deviations
of the 3D model which should be taken into account
in the analysis of experimental data. Recent theories
describing the quantum oscillations in two-dimen-
sional (2D) and q2D metals as well as examples of
their applications to the organic conductors will be
presented. Section 4 provides a brief summary of the
most important issues considered in the paper.

2. Semiclassical Magnetoresistance

2.1. Magnetoresistance in Conventional Metals
The theory of galvanomagnetic phenomena in

normal metals was basically developed in the 1950s.
Since then, the magnetoresistance technique has
been very extensively used for about two decades in
experimental studies of FSs of many simple metals
and some metallic compounds. Detailed reviews of
the standard theory are given by Pippard23 and
Lifshitz, Azbel, and Kaganov;27 the basic principles
can also be found in more general textbooks; see, for
example, refs 28-31. Here, we will only briefly
introduce the most essential points of the semiclas-
sical model. In the following, we will consider elec-
trons in the vicinity of the Fermi level εF, which are
responsible for conducting properties, and assume
that scattering processes can be taken into account
by introducing a constant relaxation time τ, inde-
pendent of the electron’s momentum and magnetic
field. The latter, so-called τ-approximation is not
always justified. For example, it ignores oscillations
of τ in quantizing magnetic fields, which gives rise
to the SdH effect presented in section 3. Nevertheless,
this approximation provides a very good starting
point for understanding the qualitative behavior of
the semiclassical magnetoresistance.

When a magnetic field B is applied to a metal, the
conduction electrons are subject to the Lorentz force:

where p, v, and e are, respectively, the electron’s
momentum, velocity, and charge. From eq 1 it im-
mediately follows that the Lorentz force affects the
momentum components in the plane perpendicular
to the field; the projection of the momentum on the
field direction, pB, is constant. Further, the Lorentz
force does not change the electron’s energy, since it
is always perpendicular to v. Therefore, in the
momentum space, the electron motion is described
by an orbit lying on the intersection of the FS and
the plane pB ) constant, that is, normal to the field
direction.

At a low field, the momentum p does not change
significantly during the scattering time τ. The elec-
tron’s trajectory is only slightly curved; the charac-
teristic radius of curvature (Larmor radius), rL ) pF/
eB (pF is the Fermi momentum), is much larger than
the mean free path l. In this case it can be shown
that, for a current perpendicular to the field, the
relative change in the resistivity is

Let us increase the field so that rL j l. According
to eq 1, the momentum associated with each indi-
vidual electron will considerably change within the
time τ. This obviously results in a varying electron’s
velocity v(p) ) ∂ε(p)/∂p, which depends on the
momentum and is always perpendicular to the FS.
To calculate the conductivity, now one has to solve
the Boltzmann kinetic equation in the presence of
both electric and magnetic fields. In the semiclassical
τ-approximation the solution yields the conductivity
tensor σRâ in the form

where R and â stand for x, y, or z; df0/dε is the energy
derivative of the equilibrium Fermi distribution
function; and vâ(p) is the velocity averaged over the
scattering time τ:

One can see from eqs 3 and 4 that the conductivity
is determined by the average velocity, which depends
on the magnetic field. From eqs 1, 3, and 4 one can
numerically calculate the conductivity and, therefore,
the resistance of a metal, provided the electron
dispersion law ε(p) and, hence, the velocity v(p) are
known. More interesting but, generally, much more
complicated is the inverse problem: how to learn
something new about the electron dispersion from the
experimentally measured magnetoresistance. Lifshitz
and co-workers32,33 have shown that the asymptotic
behavior of the conductivity (eq 3) in high magnetic
fields is qualitatively determined by the topology of
electron orbits on the FS and therefore can give
important information about the FS geometry.

FL ) dp
dt

) ev × B (1)

∆F(B)
F(0)

∝ ( l
rL

)2
∝ B2 (2)

σRâ ) - 2e2τ
(2πp)3 ∫ df0

dε
vR(p)vâ(p) dp (3)

vâ(p) ) 1
τ∫-∞

0
vâ(p,t)et/τ dt (4)
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The electron motion along a closed orbit in p-space
can be characterized by a cyclotron frequency,

where S is the orbit area and

is a so-called cyclotron mass. In the high-field limit,
ωcτ . 1 (or, equivalently, rL/l , 1), the electron
completes many turns around the FS before being
scattered. Its velocity components perpendicular to
the field rapidly oscillate around zero, so that their
time-average values tend to zero as the field in-
creases. According to eq 3, this leads to a decrease of
the corresponding conductivity components. In the
coordinate system with the z axis directed along B,
the conductivity tensor can be expressed as32

where γ ) (ωcτ)-1 , 1, σ0 is the conductivity at zero
field, and aij are coefficients determined by charac-
teristics of the material and usually have the order
of unity.

By taking the inverse of the tensor in eq 7, one
obtains that, at the lowest order in γ, the diagonal
components of resistivity are independent of B:

Thus, if all the orbits on the FS are closed, magne-
toresistance comes to saturation at increasing field,
for both the transverse (Fxx, Fyy) and longitudinal (Fzz)
geometries.

If the FS is open, it is possible to align the magnetic
field in such a way that an electron orbit in p-space
will be open, that is, will cross Brillouin zone bound-
aries and extend to infinity. If the open orbit is, say,
in the x direction (and, as before, B||ẑ), the y-
component of the velocity does not oscillate around
zero. Therefore, the time average of vy does not vanish
and the conductivity components σyy and σyz tend to
finite values at increasing field:32,33

at γ , 1. The diagonal resistivity components in this
case are

Thus, the magnetoresistance measured in the direc-
tion of an open orbit increases quadratically with
field.

The qualitative difference between the behavior of
Fxx in eqs 8 and 10 allows for probing the FS topology
by means of a careful examination of the dependence
of magnetoresistance on the magnetic field and
electric current orientations. It should be noted that
three-dimensional FSs are often quite complex, and
this makes the measurement and analysis of angular
diagrams of magnetoresistance very difficult and
time-consuming. Such experiments have significantly
contributed to studies of FSs of conventional metals
(see, e.g., ref 21).

2.2. Cylindrical Fermi Surface
In this section, we will consider magnetoresistance

behavior associated with a FS in the form of a
cylinder slightly warped along its axis. Such a FS is,
for example, typical of salts with the â-type packing
of organic cation radicals.1,25,34 In particular, as we
will see, â-(BEDT-TTF)2IBr2 appears to be an ideal
model object demonstrating all the basic effects. In
many other compounds the FS consists of either
multiple cylinders or a combination of a cylinder and
a pair of corrugated planar sheets.1,17,25,35 Therefore,
the magnetoresistance properties introduced here can
often be observed in such materials as well.

We will start with the most remarkable phenom-
enon, angle-dependent magnetoresistance oscilla-
tions, which provide a simple and, at the same time,
extremely effective method of investigation of q2D
FSs. After that we will consider the behavior of the
nonoscillatory magnetoresistance background when
the field is rotated (a) with respect to the plane of
highly conducting layers and (b) within this plane.
It will be shown what additional information about
the electronic system can be obtained from this
behavior.

Before proceeding further, the following comments
should be made. First, it turns out that the most
interesting, qualitatively new effects are observed in
magnetoresistance measured with the current di-
rected perpendicular to the plane of highly conduct-
ing layers, that is, in the interlayer resistance geom-
etry. Fortunately, it is the interlayer resistance that
can be most reliably measured in highly anisotropic
layered compounds, using the conventional four-
probe dc or low-frequency ac techniques. Indeed, let
us consider a typical experimental geometry, as
shown schematically in Figure 2a. Single crystals of
organic metals are usually platelets with dimensions
∼1 × (0.1-1) mm2 in the plane of highly conducting
molecular layers, and a thickness (i.e. the size in the
direction perpendicular to the layers) ∼ 0.1 mm. To
measure the interlayer resistance R⊥, one applies a
current I via two leads attached, by a conducting
paint, to the opposite lateral surfaces of the sample
and records the voltage U on the adjacent pair of
voltage leads. Given that the resistivity anisotropy
ratio is, typically,

(F⊥ and F| are the resistivities across and within the
layers, respectively; in the plane of the layers the
resistivity anisotropy is usually only ∼1-5), the

F⊥/F| ∼ 103 to 105 (12)

ωc ) 2πeB
(∂S/∂ε)pB

) eB
mc

(5)

mc ) (2π)-1(∂S/∂ε)pB
(6)

σRâ
closed ) σ0(γ2axx γaxy γaxz

-γaxy γ2ayy γayz

-γaxz -γayz azz
) (7)

Fxx,yy,zz
closed f constant (8)

σRâ
open ) σ0(γ2axx γaxy γaxz

-γaxy ayy ayz
-γaxz -ayz azz

) (9)

Fxx
open ∝ (ωcτ)2 ∝ B2 (10)

Fyy,zz
open f constant (11)
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current distribution is roughly equivalent to that in
an isotropic rod with a cross section of 1 × (0.1-1)
mm2 and length of 102-104 mm and, thus, can be
taken as perfectly homogeneous. The resistance is
then, obviously, determined as R⊥ ) U/I. By contrast,
the in-plane resistance measurements are typically
much less reliable: the distribution of the current
applied, nominally, along the layers is essentially
inhomogeneous and strongly depends on the anisot-
ropy ratio (eq 12).36,37 Moreover, even small devia-
tions of the current distribution from the ideal one
caused by crystal imperfections such as microcracks
or cavities, which are often met in organic metal
crystals, lead to an uncontrollable mixing of the F|

and F⊥ components. Thus, in what follows we will
focus on the interlayer magnetoresistance.

Next, since the crystal orientation in a magnetic
field is of primary importance in most of the phe-
nomena discussed in this article, it is worth introduc-
ing notations with which the crystal versus field
orientation will be defined hereinafter. As shown in
Figure 2b, we introduce the coordinate system with
the xy plane parallel to the plane of the molecular
layers and the z axis normal to this plane. In cases
of a strongly anisotropic in-plane conductivity, the x
axis will be directed along the highest-conduction
direction. The field orientation is defined by a polar
angle θ, between the field direction and the z axis,
and an azimuthal angle æ which is formed by the
projection of the field on the xy plane and some
characteristic direction in this plane, for example, the
direction of molecular chains.

2.2.1. Angle-Dependent Magnetoresistance Oscillations
(AMROs)

From the presented above results of the standard
model one would, at first sight, expect a rather simple
orientational dependence of the magnetoresistance
in a layered metal with a cylindrical, only slightly
warped, FS. Indeed, with tilting the field from the z

axis (that is normal to the layers and, hence, parallel
to the axis of the Fermi cylinder) toward a direction
parallel to the layers, the topology of the electron
orbits in p-space, which are always perpendicular to
B, simply changes from closed (at θ not too near to
π/2) to open (at θ ≈ π/2). Therefore, one could expect
a gradual change from the regime described by eq 8
to that given by eqs 10 and 11, as described, for
example, in refs 28 and 33.

However, already one of the first experimental
studies38 of the magnetoresistance anisotropy in a
clean sample of the layered superconductor â-(BEDT-
TTF)2IBr2 has shown a much more complex behavior.
Figure 3 shows the resistance measured with the
current applied along and perpendicular to the highly
conducting ab plane (upper curve and lower curve,
respectively) at the magnetic field B ) 15 T rotating
in the ac* plane (where c* ⊥ ab). The most obvious
difference from the simple scenario mentioned above
is the presence, in both curves, of a regular series of
strong oscillations. Soon after this observation, simi-
lar oscillations were found39 in another layered
superconductor, θ-(BEDT-TTF)2I3, implying that they
are a general property of q2D metals.

The basic features of these angle-dependent mag-
netoresistance oscillations or, shorter, AMROs can be
summarized as follows:38-40

(i) The positions of the peaks in the magnetoresis-
tance are unaffected by temperature or magnetic field
strength and repeat periodically in the scale of tan
θ.

(ii) The AMRO amplitude is much stronger for the
interlayer resistance than for the intralayer one (see
Figure 3).

Figure 2. (a) Typical scheme of four-probe resistance
measurements. Current I is applied through the opposite
flat faces parallel to the highly conducting layers in the
crystal; voltage U is measured between the same faces.
Such a geometry provides a reliable evaluation of the
interlayer resistance in the highly anisotropic layered
organic conductors (see text). (b) Conventional definition
of the magnetic field orientation by the tilt angle θ and
the azimuthal angle æ. Figure 3. Angular dependence of the magnetoresistance

of â-(BEDT-TTF)2IBr2 measured along (upper curve) and
perpendicular to (lower curve) the highly conducting layers,
at T ) 1.4 K and B ) 15 T.38 The semiclassical magne-
toresistance exhibits strong oscillations (AMRO). The weak,
as compared to the AMRO, Shubnikov-de Haas oscilla-
tions at θ corresponding to the first AMRO peak are shown
in the inset, in an enlarged scale.
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(iii) The field dependence of the interlayer magne-
toresistance is qualitatively different at the field
orientations corresponding, respectively, to the dips
and to the peaks of the oscillations. In the dips, R⊥(B)
is sublinear, tending to saturation, whereas in the
peaks it increases with field without saturation,
approximately proportional to B2.

(iv) The SdH oscillations, which are much smaller
in magnitude than the AMROs (see the expanded
R(θ) fragment in Figure 3), are strongly enhanced
in the AMRO peaks.

Feature (i) indicates that the AMRO phenomenon
must be associated with a specific geometry of the
electron orbits in a tilted magnetic field rather than
with phase transitions or a field-induced quantization
of the energy spectrum (the latter, so-called Landau,
quantization gives rise to the SdH oscillations whose
angular position changes with the field strength).
Feature (ii) suggests that the AMROs are primarily
a property of the interlayer resistivity Fzz. The first,
very important step in understanding the geometrical
nature of AMROs was made by Yamaji.41 He consid-
ered electron orbits on a weakly warped Fermi
cylinder determined by the simplified dispersion law:

with t⊥ (, εF) and d being the interlayer overlap
integral and interlayer period, respectively, and
noticed that the difference, ∆S, between the largest
and the smallest areas of electron orbits on this
cylinder oscillates with tilting the field:

where pF ) (2mεF)1/2 is the in-plane Fermi momentum
and J0 is the zeroth order Bessel function. In par-
ticular, for tan θ > 1 the Bessel function can be
approximated as

and, therefore, ∆S ) 0; that is, all the orbits have
the same area when41

At angles satisfying this condition, the system be-
comes similar to a perfectly 2D metal in the sense
that the energy spectrum is completely quantized
into a series of Landau levels. This should lead to a
dramatic enhancement of the SdH and dHvA oscil-
lations, as, indeed, was observed in the experi-
ment.25,38,40

As to the strong increase of the resistivity, it was
proposed41 that the complete Landau quantization
also gives rise to an enhanced interlayer resistivity
at the angles satisfying eq 16. However, it should be
noted that the AMROs are observed even at condi-
tions when the quantization effects, such as SdH
oscillations, are completely suppressed due to strong
scattering or high temperature. Therefore, the nature

of AMROs is more likely semiclassical, without
involving the Landau quantization.

Indeed, Yagi et al.42 have succeeded in simulating
the AMRO effect by numerical integration of the
semiclassical expression of the form in eq 3 for the
interlayer conductivity σzz(B), assuming the simpli-
fied dispersion relation in eq 13. They have also
obtained the analytical formula for the conductivity
illustrating the angular oscillations:

where Jn is the n-th order Bessel function, ωc )
eB cos θ/m is the cyclotron frequency in the tilted
field, and σ°zz ) σzz(B ) 0). In high fields, ωcτ . 1, the
dominant contribution to the sum in eq 17 is gener-
ally given by the term with n ) 0. However, at the
tilt angles satisfying the condition in eq 16 the
numerator of this term vanishes, which leads to a
sharp decrease in the conductivity and hence to a
peak in the resistivity Fzz ≈ 1/σzz. The field depen-
dence Fzz(B) has been shown42 to change qualitatively
on moving from an AMRO peak to a dip, in agree-
ment with the experiment [see feature (iii) of the
AMROs above]. Similar results describing the AMRO
behavior have been obtained by Peschansky et al.43

for a generalized q2D spectrum.
Qualitatively, the physical origin of the AMROs can

be understood from the following consideration.3 In
the high-field limit, ωcτ . 1, the conductivity σzz
essentially depends on the interlayer velocity vz
averaged over the period of the electron motion on
the closed orbit (see eqs 3 and 4). The latter, in turn,
is determined by the dependence of the orbit area S
on the position in p-space:

where Pz is the point at which the plane of the orbit
intersects the pz axis, and the cyclotron mass mc
defined by eq 6 monotonically increases proportional
to 1/cos θ in the q2D case. The derivative ∂S(Pz)/∂Pz
is, generally, also finite, so that the interlayer
conductivity σzz saturates at a finite value with
increasing the field. However, at the angles satisfying
Yamaji’s condition in eq 16, ∂S(Pz)/∂Pz ≈ 0. This leads
to the vanishing averaged velocity vz and, hence,
vanishing σzz. An explicit analysis shows43 that, at
Yamaji’s angles, the interlayer resistivity rapidly
increases,

as long as 1 , ωcτ , εF/t⊥, tending to saturation only
at ωcτ > εF/t⊥.

As will be shown below (see sections 2.2.2 and
3.1.1), for â-(BEDT-TTF)2IBr2 the ratio εF/t⊥ > 102

while ωcτ = 3-7 for clean samples in fields of 10-15
T. Therefore, the dependence Fzz(B) is expected to be
approximately parabolic at Yamaji’s angles in this
field range, in agreement with the experiment.40

ε(p) )
px

2 + py
2

2m
- 2t⊥ cos(pzd/p) (13)

∆S(θ) ≈ 8πmt⊥

cos θ
J0(pFd

p
tan θ) (14)

J0(ø) ≈ x2/πø cos(ø - π/4) (15)

|tan θ| ) πp
pFd

(n - 1/4), n ) 1, 2, ... (16)

σzz ) σ°zz ∑
n)-∞

∞ Jn
2(pFd tan θ/p)

1 + (nωcτ)2
(17)

vz ) ∂ε/∂pz ) -
∂S(Pz)/∂Pz

(∂S/∂ε)Pz

) -
∂S(Pz)/∂Pz

2πmc
(18)

Fzz ∝ B2 (19)
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Thus, the AMRO phenomenon can be successfully
interpreted in terms of the semiclassical transport
model as a kind of periodically repeating dimensional
crossover between a strongly anisotropic, but still 3D,
transport and an almost ideally 2D case with a
vanishingly small interlayer transfer.

The condition in eq 16 for the AMRO peaks can be
generalized for a more realistic dispersion relation:

where ε(px,py) is an even function of px and py
corresponding to a convex cross section of the FS; ux
and uy have the meaning of in-plane components of
an oblique hopping vector h ) (ux, uy, d) along which
electrons are effectively transferred between the
layers. In this case, eq 16 should be modified to the
form3

where the sign in the ( is the same as the sign of
tan θ and the meaning of p|

max and pB
max is illustrated

in Figure 4: p|
max is the in-plane Fermi momentum

whose projection on the field rotation plane, deter-
mined by angle æ, takes the maximum value, denoted
as pB

max. From the periods of AMROs measured at
various azimuthal angles æ, one can determine
pB

max(æ) and graphically deduce the shape and size of
the FS cross section in the pxpy plane. The line
Aæ,pB

max perpendicular to the projection of the field
rotation plane on the pxpy plane drawn at the distance
pB

max from the coordinate origin is tangent to the FS
at point p|

max. One has to determine the set of Aæ,pB
max

by measuring AMROs at various æ’s, and the figure
inscribed in this set will give the FS cross section.
Such a procedure was for the first time applied to
determine the FS of â-(BEDT-TTF)2IBr2

3.

As was noted in ref 44, in the case of a regular
shape of the FS cross section, when it can be
described by the “superelliptic” parametric form,
|px/p1|R + |py/p2|R ) 1, the value pB

max can be analyti-
cally expressed via the principal semiaxes p1 and p2:

The exponent R should be greater than 1, since eq
21 is applicable only to convex cross sections. At R )
1 the shape of the “superellipse” is a rhombus; at
R f ∞, it approaches a rectangle. For an elliptical
shape, R ) 2 and eq 22 is simplified to45

It should be noted, however, that organic conduc-
tors have generally rather low-symmetric crystal
structures and irregular FSs. Therefore, for exact
determination of the FS, it is preferable to use the
direct graphical procedure described above. This can
be of special importance when, for example, nesting
properties of the FS are in question.

In addition to the determination of the FS cross
section, eq 21 gives a possibility to estimate the
direction of the hopping vector h or, in other words,
the orientation of the characteristic plane of warping
of the FS3. This is given by the asymmetry of the
positions of AMROs with respect to tan θ ) 0.

The presented semiclassical description of the
AMRO effect3,42,43 is utterly related to the interlayer
resistance. The in-plane resistance is predicted to
change in a monotonic manner with the tilt angle θ.43

To check this, Kurihara46 has performed a quantum
mechanical analysis of both σzz and σxx, based on the
eigenvalues of the model q2D Hamiltonian in a tilted
magnetic field. The result obtained for σzz essentially
coincides with that of the semiclassical model. In the
expression for σxx, a term oscillating periodically with
tan θ has been obtained. However, this term seems
to be of the order of the SdH oscillations and become
unimportant when Landau quantization effects are
suppressed due to scattering or temperature. Thus,
the relatively strong oscillations seen in the upper
curve in Figure 3 are most likely caused by the
presence of the interlayer conductivity component in
what is called “in-plane resistance” Ra.

We have shown that the AMRO phenomenon is an
extremely powerful tool, not only providing qualita-
tive information on the topology of the FS (as is the
case of ordinary 3D metals) but also enabling direct
quantitative evaluation of its exact shape and size.
Unlike magnetic quantum oscillations, such as dHvA
or SdH effects, they do not rely on the field-induced
quantization of the energy spectrum and therefore
can be observed at lower fields and higher temper-
ature. Nowadays the AMROs are routinely used in
Fermiology of metallic charge-transfer salts. A num-
ber of important examples are reviewed in refs 25,
26, and 47. Some more recent illustrative examples
are FS studies of new materials, â-(BDA-TTP)2SbF6

48,49

and (BEDT-TTF)2Br(DIA),50 and detection of cylin-
drical FS pockets at low temperatures in originally

Figure 4. Schematic view of the transverse cross section
of a cylindrical FS. B| is the field component parallel to
the xy plane; p|

max is the in-plane component of the Fermi
momentum whose projection on the direction B| attains the
maximum value pB

max; u is the in-plane component of the
interlayer hopping vector h ) (ux, uy, d); see eqs 20 and
21.

ε(p) ) ε(px,py) - 2t⊥ cos[(pzd + pxux + pyuy)/p]
(20)

|tan θ| ) [πp(n - 1/4) ( (p|
max‚u)]/pB

maxd (21)

pB
max(æ) )

sin æ + cos æ[(p1/p2)
R cot æ]1/(R-1)

[(p1 cot æ/p2
R)R/(R-1) + p2

-R]1/R
(22)

pB
max(æ) ) [(p1 cos æ)2 + (p2 sin æ)2]1/2 (23)
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q1D compounds, (TMTSF)2FSO3
51 and (DMET-TSeF)2-

Au(CN)2.52 It is worth noting that the AMROs have
also been observed and applied for FS studies in other
classes of q2D materials such as the high-Tc super-
conductor Tl2Ba2CuO6+δ,53 the triplet superconductor
Sr2RuO4,54-56 intercalated graphite,57,58 and a modu-
lated heterostructure superlattice.59

2.2.2. Magnetoresistance at High Tilt Angles
Let us now separately consider the behavior of the

nonoscillating background of the interlayer magne-
toresistance. As seen from Figure 3, the general
tendency for the background is to grow with increas-
ing θ. This has a simple physical explanation. With
tilting the field, the electron orbits, whose orientation
is strictly determined by the direction of B (see eq
1), cross more and more p-space unit cells in the pz
direction, which causes the interlayer velocity to
oscillate more rapidly. This is clearly seen if we use,
for example, the simplified dispersion relation in eq
13. The oscillations of the velocity,

are determined by the rapidly changing pz(t) compo-
nent. As a result, the average over the cyclotron
period vz decreases with increasing θ, leading to a
decrease of σzz and, correspondingly, an increase of
the interlayer resistivity.60

With tilting the field, the electron orbits become
elongated and the cyclotron frequency decreases:

where ωc0 ) eB/mc(θ)0). While ωc0 is, as usually,
supposed to be much bigger than the scattering rate
1/τ, the actual frequency ωc(θ) becomes smaller than
1/τ at low enough cos θ. In the limit ωc(θ)τ , 1, the
electron can only traverse a small part of the long
closed orbit within the time τ. Averaging the velocity
vz over the whole cyclotron period is no longer
appropriate; rather, one should use explicitly the
scattering time. Thus, the averaged vz will be deter-
mined by the product ω1τ, where ω1 = ωc0pFd/p ∼ ωc0
is the frequency of crossing one unit cell in p-space,
which is almost independent of θ at strongly tilted
fields. Therefore, the angle dependence of the mag-
netoresistance is expected to flatten at θ1 < θ < π -
θ1,60 where θ1 = arccos(1/ωc0τ). Obviously, the AM-
ROs, whose existence relies on the periodic motion
on closed orbits (see eq 18), are suppressed at the
same angles. From the data of refs 3 and 38 the
characteristic angle θ1 is estimated as ≈(80-82)° for
â-(BEDT-TTF)2IBr2, at the field of 15 T, yielding the
parameter ωc0τ e 6-7. From this, the scattering time
can be evaluated: τ = 10 ps, if one substitutes the
effective cyclotron mass mc(θ)0) ) 4.2me (me is the
free electron mass) determined from magnetic quan-
tum oscillations.40,61 This estimation of the scattering
time is in good agreement with the value obtained
from the SdH data (see section 3.5.1).

With θ coming even closer to π/2, that is, when the
field approaches the orientation exactly parallel to

the layers, the interlayer magnetoresistance in Fig-
ure 3 exhibits a sharp peak. The height of the peak
can amount to 30% of the background resistance at
B ) 15 T.3 Hanasaki et al.62 have performed a
detailed investigation of this feature on âH-(BEDT-
TTF)2I3,63 which is very similar to â-(BEDT-TTF)2IBr2
in the crystal and electronic structure,25,34,64,65 pos-
sessing a single cylindrical FS. The width of the peak
was found to be independent of the field strength,
thus suggesting a geometrical origin of the effect. The
peak feature and its dependence on magnetic field
have been successfully reproduced in numerical
simulations of the semiclassical magnetoresistance62

based on eq 3 and the q2D dispersion relation (eq
13). The results of the calculations are illustrated in
Figure 5.

To explain the effect, one has to take into account
an important topological change in electron orbits at
θ f π/2. When the tilt angle reaches the value θc ∼
arctan(εF/2t⊥), a part of the orbits splits, producing
small closed loops at the very side of the warped FS,
as shown in the inset in Figure 5 and, in another
projection, in Figure 6. It was originally proposed62,66

that it is an effective averaging of vz over periodic
precession on these small closed orbits that gives rise
to the peak. Therefore, the latter should appear when
the characteristic frequency of the cyclotron motion
on these orbits, ωsmall ∼ ωc0(t⊥/εF)1/2, exceeds the
scattering rate 1/τ. For the isotropic, parabolic in-
plane dispersion (eq 13), the magnetic field at which
electrons make at least one complete turn on the
small orbit is62

vz ) ∂ε

∂pz
)

2t⊥d
p

sin(pz(t)d
p ) (24)

ωc(θ) ) ωc0 cos θ (25)

Figure 5. Calculated semiclassical magnetoresistance as
a function of the tilt angle. Dashed arrows point to the
AMRO maxima, and the solid arrow points to the peak
feature at θ ∼ 90°. The upper left inset shows the peak
feature at different values of the parameter ωc0τ, that is,
at different magnetic fields. The lower right inset shows
schematically cyclotron orbits on the warped FS at θ close
to 90°. (Reproduced with permission from ref 62. Copyright
1998 American Physical Society.)

B g Bc ) 2πp
edτ(mc

2t⊥
)1/2

(26)

5744 Chemical Reviews, 2004, Vol. 104, No. 11 Kartsovnik



To evaluate Bc, we substitute in eq 26 the scatter-
ing time estimated above (τ ) 10 ps), the interlayer
period34 (d ≈ 15 Å), and the cyclotron mass and
interlayer transfer integral extracted from data on
magnetic quantum oscillations40,61,67 (mc ) 4.2me and
t⊥ = 0.35 meV). As a result, we obtain Bc = 50 T for
â-(BEDT-TTF)2IBr2. This estimate should also be
valid for âH-(BEDT-TTF)2I3, since the crystallo-
graphic and electronic properties of these compounds
are very similar. However, the peak feature becomes
clearly visible at fields almost an order of magnitude
lower for both salts. This implies that making com-
plete closed trajectories is not necessary for the
observation of the peak. As suggested in ref 68, more
relevant here is the existence of self-crossing orbits
which lie on the border separating the split orbits
and the rest. An example of such a self-crossing orbit
is shown in Figure 6. The Fermi velocity at the
crossing point A is exactly parallel to the field
direction. Provided the FS warping is very weak,
t⊥ , εF, the velocities are nearly parallel to B in a
relatively large area around point A. According to eq
1, the Lorentz force almost vanishes in this area, so
that the electrons do not move on the FS, no matter
whether they are situated on the small or big orbits.
Obviously, the velocities of such electrons are con-
served. Therefore, their contribution to the interlayer
conductivity dominates over the contributions from
electrons situated far from the self-crossing orbits
whose interlayer velocities rapidly oscillate.60,69 At
θ ) θc the z-component of the Fermi velocity at the
crossing point is maximum, vz

A = 2t⊥d/p, which gives
rise to a local minimum in the angular dependence
of the interlayer magnetoresistance68 (see Figures 3
and 5). As θ further approaches π/2, vz

A rapidly
decreases and becomes exactly zero at θ ) π/2. This
results in a sharp peak of the magnetoresistance at
θc < θ < π - θc.

The width of the peak provides an estimate of the
anisotropy ratio 2t⊥/εF:62,68 for the dispersion law (eq
13), it is determined as

For the present salts, the width of the peak varies
between ≈1.5° and ≈3°, depending on the azimuthal
angle æ, which indicates a substantial dependence
of the FS warping on æ. This yields the anisotropy
ratio 2t⊥/εF being in the range ∼1/100 to ∼1/200. This
result is consistent with the value obtained from the
beat frequency of the magnetic quantum oscilla-
tions38,40,61,70 (see sections 3.1.1 and 3.5.1).

It is worth noting that the peak feature vanishes
in a narrow interval of æ in â-(BEDT-TTF)2IBr2.3 A
similar effect is likely observed in âH-(BEDT-TTF)2I3

62

and (BEDT-TTF)2Br(DIA)50 and in κ-(BEDT-TTF)2Cu2-
(CN)3 under pressure.71 A more detailed study is
necessary to clarify whether it means a vanishing
warping of the FS at these æ’s (more precisely, losing
the coherence of the interlayer charge transport as
discussed in section 2.5).

2.2.3. In-Plane Field Rotation
The in-plane cross section of the FS of â-(BEDT-

TTF)2IBr2 determined from the AMRO experiments3

is not very anisotropic: pF varies as a function of the
azimuthal angle æ by not more than a factor of 1.5.
Therefore, the electronic properties are not expected
to strongly depend on the direction in the highly
conducting ab plane. However, the interlayer resis-
tance was found to change by an order of magnitude
when the field was rotating in the ab plane.40 The
angular diagram is represented in polar coordinates
in Figure 7 along with the experimentally determined
FS cross section.

The reason for this surprisingly strong effect of the
azimuthal field orientation72,73 is similar to the mech-
anism discussed in the previous paragraph in the
sense that in both cases so-called “effective” electron
orbits which dominate in the total conductivity60,74

are involved. Let us consider different open orbits
perpendicular to the pxpy plane which correspond to

Figure 6. Schematic view of cyclotron orbits on a warped
cylindrical FS under a magnetic field almost parallel to the
layers. The thin line (with arrows indicating the direction
of the electron motion) is the self-crossing orbit which
separates the regions of big single-connected orbits (to the
left) from those where each orbit is split into a big one and
a small closed loop on the edge of the FS (to the right of
the self-crossing orbit). The Fermi velocity in the vicinity
of the crossing point, A, is nearly parallel to the magnetic
field.

Figure 7. Transverse cross section of the FS of â-(BEDT-
TTF)2IBr2 determined from the AMRO experiment3 and the
interlayer magnetoresistance40 (MR) as a function of
azimuthal angle æ plotted in polar coordinates. Thin lines
indicate the Brillouin zone boundary and the crystal axes
directions.

2t⊥

εF
= (π - 2θc)

p
pFd

(27)
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the electron motion in a magnetic field B ) (B cos æ,
B sin æ, 0). The mentioned above small closed orbits,
originating from the warping of the FS, will be
neglected here, as they are insignificant for a quali-
tative understanding of the effect. On most of the
orbits, electrons have a substantial in-plane velocity
component v|,n perpendicular to the field direction,
as shown, for example, in Figure 8 for an orbit
passing through point P| on the FS cross section. Due
to the Lorentz force (eq 1), the momentum component
pz rapidly changes, making the interlayer velocity
oscillate around zero. Therefore, the contributions
from such orbits to the conductivity σzz vanish with
increasing the field strength. In this situation the
orbits in the vicinity of point P|,B, at which the
velocity is nearly parallel to B (marked by a thick
line in Figure 8), dominate in σzz.60,74 The relative
number of these “effective” orbits obviously depends
on the curvature of the in-plane FS cross section at
point P|,B: it increases (therefore σzz increases) with
increasing the radius of curvature κFS(P|,B). As shown
by Lebed and Bagmet,74 the interlayer resistivity
Fzz ≈ 1/σzz is ultimately determined by the ratio
v|

2(P|,B)/κFS(P|,B) at an intermediate field such that
1 < ωc0τ e (εF/t⊥)1/2 ∼ 10.

If the in-plane Fermi velocity component v| is not
very anisotropic (as appears to be the case of the
present compound), the dependence of the interlayer
magnetoresistance on the field orientation within the
conducting plane is mostly governed by κFS(æ). For
an elliptical FS cross section with the main axes p|,max
and p|,min, the maximum and minimum values of the
curvature are related to each other as (p|,max/p|,min)3.
From the data of ref 3, this ratio can be estimated
as ≈2.7, which is considerably smaller than the
observed anisotropy. This reveals a substantial de-
viation of the FS shape from an ellipse.

From Figure 7 one can clearly see that the maxima
in the magnetoresistance very well correspond to
the maxima of the FS curvature, κFS

-1(æ), in good
agreement with the above consideration. However,
the matching between the magnetoresistance and

κFS
-1(æ) is not everywhere perfect. For example, de-

spite a rather low curvature of the FS obtained from
the AMRO data at æ ) 0°, the magnetoresistance is
relatively high, about half of its maximum value, at
this angle. Further studies are necessary in order to
understand this result.

Finally, a short comment should be made on the
field dependence of the magnetoresistance for the
field lying in the 2D plane. Theoretical analysis60,74,75

predicts an unusual, linear behavior of Fzz(B) at
intermediate fields 1 < ωc0τ e (εF/t⊥)1/2. The conven-
tional quadratic field dependence should be restored
only when ωc0τ > (εF/t⊥)1/2. For the present â-type salts
this would correspond to fields ∼ 25 T. Indeed, the
linear magnetoresistance has been observed in
â-(BEDT-TTF)2IBr2 at some field orientations æ.40

However, at φ’s corresponding to the region of the
main peak of the angular diagram in Figure 7, the
dependence Fzz(B) is definitely superlinear at all fields
between 2 and 15 T.40,66 The reason for such a
behavior is not quite clear at present.

2.3. Open Fermi Sheets
FSs of many layered compounds, for example, R-,

κ-, and λ-type salts of BEDT-TTF and its derivatives,
include, in addition to a cylindrical part, a pair of
corrugated sheets which are open in the plane of the
layers (see, e.g., Figure 1c,d). This may lead to new
features in magnetoresistance in comparison to those
considered above. Here we will review effects of
magnetic field orientation originating from the exist-
ence of open Fermi sheets.

For this purpose, we will consider a FS solely
consisting of sheets extended perpendicular to the x
axis and warped along the y axis much more strongly
than along z axis. In the tight-binding approximation
the energy spectrum of such a system is written as

Here x and z axes are associated with the most and
the least conducting directions, respectively, so that
the transfer integrals are tx . ty . tz; ax, ay, and az
are the corresponding lattice constants. The disper-
sion along the x axis is often approximated to be
linear near the Fermi level, and eq 28 is written in
the simplified form:

where vF and pF are respectively the Fermi velocity
and momentum at ty ) tz ) 0.

The most prominent examples of such q1D metals
with strongly anisotropic coupling between the 1D
chains are the Bechgaard salts (TMTSF)2X.1 Despite
a very simple electronic band structure, these com-
pounds exhibit numerous exciting phenomena as-
sociated with spin-density-wave states, non-Fermi-
liquid behavior, and exotic (most likely triplet)
superconductivity (see refs 1, 9, and 76-78 for a
review). Our consideration will be restricted to the
magnetoresistance behavior in the normal state

Figure 8. Schematic view of the FS cross section by the
plane pz ) constant. At an arbitrary position, e.g., at P|,
the electrons have a substantial velocity component, v|,n
normal to the in-plane magnetic field, B, and rapidly move
on the FS along pz under the Lorentz force (eq 1). The
interlayer velocity of such electrons, vz, averages asymp-
totically to zero. By contrast, in the vicinity of point P|,B
the velocity is almost parallel to B. Therefore, the electrons
here conserve their momentum and velocity, thus dominat-
ing in the total conductivity σzz.

ε(p) ) 2tx cos(pxax/p) - 2ty cos(pyay/p) -
2tz cos(pzaz/p) - εF (28)

ε(p) ) vF(|px| - pF) - 2ty cos(pyay/p) -
2tz cos(pzaz/p) (29)
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which is likely transferable to the case of q2D
materials containing open Fermi sheets. Again, we
will consider the magnetoresistance measured along
the least conducting direction. Basically, three dif-
ferent phenomena, namely, Lebed magic-angle reso-
nances, Danner-Kang-Chaikin oscillations, and the
so-called third angular effect, are distinguished in the
(TMTSF)2X salts, depending on whether the field is
rotated in the yz, xz, or xy plane, respectively.

2.3.1. Lebed Magic-Angle Resonances
When a strong magnetic field is applied in a plane

perpendicular to the chain direction, B ) (0, B sin θ,
B cos θ), the Lorentz force (eq 1) makes electrons
move along the Fermi sheets, crossing many Brillouin
zones with an almost constant rate dp/dt ∝ vF. The
frequencies of crossing one Brillouin zone in the py
and pz directions are, respectively,

and

For a generic value of θ, these frequencies are
different and the electron motion is aperiodic. How-
ever, as was first noted by Lebed,79 when the field is
directed along a lattice vector, that is, when

where p and q are integers, the frequencies are
commensurate (one can consider this as a kind of a
resonance) and the motion in p-space becomes peri-
odic. For the (TMTSF)2X salts characterized by the
spin-density-wave instability, this may have impor-
tant consequences regarding the ground state.79 It
turns out that even in the normal metallic state the
transport properties are affected by this periodicity.
Naughton et al.80,81 and Osada et al.82 were the first
to report an anomalous decrease of magnetoresis-
tance in the metallic state of (TMTSF)2ClO4 at the
Lebed magic angles (LMAs) satisfying the condition
in eq 32. Later the same effect, but even more
pronounced, was found in (TMTSF)2X with X ) PF6
and ReO4 under pressure83-86 as well as in some other
q1D conductors, for example, (DMET-TSeF)2X (X )
AuCl2, AuI2)87,88 and (BEDT-TTF)(TCNQ).89 LMA
resonances, though less pronounced, have also
been found in several q2D materials containing both
a Fermi cylinder and a Fermi sheet, κ-(BEDT-TTF)2-
Cu(NCS)2,90-92 R-(BETS)2TlHg(SeCN)4,93 R-(BEDT-
TTF)2NH4Hg(SCN)4,94 and pressurized (to normal
metallic state) R-(BEDT-TTF)2KHg(SCN)4.95 An ex-
tremely strong LMA-like effect is observed in the
anomalous low-temperature state of R-(BEDT-TTF)2-
MHg(SCN)4 with M ) Tl,96,97 K,98-101 and Rb.102

At present there exist plenty of theoretical models
associating the LMA effect in q1D conductors with
the field-induced density-wave instability,79,103,104

electron-electron interaction,105-110 and violations of
the Fermi-liquid behavior.77,111,112 Here, we will present
only models based on the Fermi-liquid, one-particle
approach within the relaxation time approximation,
as they appear to be more relevant to the case of
normal metallic q2D compounds.

Perhaps the most popular is the model proposed
by Osada and co-workers,113 who considered the
electron orbital motion in a system with a spectrum
(eq 29) modified to include higher-order interchain
transfer terms:

where tmn describe the effective electron hopping
along the corresponding lattice vectors Rmn ) (0, may,
naz). The velocity in the y and z directions was found
to exhibit peaks at LMAs. This result has a simple
physical meaning: For a general field orientation, all
the (m, n)-th contributions to the velocity perpen-
dicular to the chains, being proportional to tmn
sin[(maypy(t) + nazpz(t))/p], oscillate due to the time-
dependent momentum py,z(t) (see eqs 30 and 31) and
their averages vanish at high fields. However, when
the field is directed along one of the lattice vectors,
Rpq, that is, satisfies the condition in eq 32, the
contribution from the (p, q)-th hopping term is exactly
parallel to B; hence, it is not affected by the Lorentz
force. Therefore, the total velocity does not vanish
at any field at this direction, provided the hopping
amplitude 4tpq is finite.

More explicitly, the solution of the Boltzmann
kinetic equation yields the components of the con-
ductivity tensor in the form113

where D(εF) is the density of states per unit volume
at the Fermi level, ω is the frequency at which the
conductivity is measured, and

In the dc limit (ω ) 0), all the conductivity compo-
nents σij with i, j ) y, z exhibit peaks when Gmn ) 0.
This exactly corresponds to the LMA condition in eq
32. For a material isotropic in the yz plane, the
oscillations of the terms σij which determine the
resistivity Fyy and Fzz cancel each other, so that there
are nearly no features in the angular dependence of
the magnetoresistance. However, the compounds we
are considering are strongly anisotropic in the yz
plane: even in the q1D salts (TMTSF)2X the anisot-
ropy ratio ty/tz = 30.1 In this case, Fzz ≈ 1/σzz should
exhibit distinct dips at LMAs.113

Obviously, the existence of a magnetoresistance dip
at the LMA with index p/q relies on the significance
of the contribution of the corresponding term tpq to

[ty cos(pyay/p) + tz cos(pzaz/p)] f

∑
m,n

tmn cos[(mpyay + npzaz)/p] (33)

(σyy σyz
σzy σzz ) ) D(εF)∑

m,n
(etmn

p )2(m2ay
2 mnayaz

mnayaz n2az
2 ) ×

τ

1 + [(ω - vFGmn)τ]2
(34)

Gmn ) eB(may cos θ - naz sin θ)/p (35)

ωy )
ay

p |dpy

dt | )
evFay

p
B cos θ (30)

ωz )
az

p |dpz

dt | )
evFaz

p
B sin θ (31)

tan θ ) p
q

ay

az
(32)
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the electronic spectrum. Because of the strongly
suppressed electron transfer in the z direction in our
materials, the terms with q > 1 can usually be
neglected. Therefore, one should expect the reso-
nances to be pronounced only at integer values
p/q ) N,113,114 in agreement with the experi-
ment.80-89,91-95,115 On the other hand, it seems un-
likely that the observation of the high-index reso-
nances (for example, in (TMTSF)2ReO4, the features
with N up to 21 are observed86) can be attributed to
the existence of such high-order interchain transfer
terms.

An alternative model proposed by Maki116 does not
require high-order interchain transfer (eq 33) but
takes into account the nonlinearity of the real
electron spectrum in the chain direction, which leads
to a dependence of the velocity component vx on
momentum py. The idea of the momentum-dependent
velocity vx has recently been further explored by
Lebed and Naughton.117 They considered the disper-
sion relation in the form

where

and vF is the Fermi velocity at ty ) tz ) 0. The
conductivity σzz derived on the basis of quantum
mechanical analysis has been found to exhibit peaks
at LMAs. The weight factors of the oscillating terms
are determined by the coefficients of the Fourier
expansion of the momentum-dependent velocity vx(py)
multiplied by tan θ.

From the semiclassical point of view, one could
interpret the result as follows. Electrons stay longer
at the parts of their trajectories where vx(py) is lower.
These “effective” parts dominate in the time-averaged
velocity in the high-field limit. As discussed above,
the interlayer velocity component vz is averaged to
zero at a general field orientation. However, at LMAs
the trajectories in p-space become periodic and vz is
the same at the different effective parts. This leads
to a finite value of vz and, hence, to enhanced
interlayer conductivity σzz. One should, however, be
cautious with this semiclassical description. In fact,
Lebed and Naughton emphasize that their model
cannot be reduced to a semiclassical consideration
of electron orbits on a nonharmonically warped FS:
rather it is associated with quantum interference
effects causing 1D-2D crossovers of electron wave
functions, depending on the field direction.117

2.3.2. Danner−Kang−Chaikin Oscillations
Another kind of oscillatory phenomena was found

by Danner, Kang, and Chaikin118 on (TMTSF)2ClO4
when the field was rotated from the direction of the
least conductivity toward the chain direction, that is,
in the xz plane in our notation. Their results are
reproduced in Figure 9. The interlayer magnetore-
sistance shows a series of peaks as the field is
approaching the x axis (the crystallographic a axis).
The effect has been consistently described in terms

of the semiclassical model.118 We assume the linear-
ized dispersion (eq 29) and consider the electron
motion in the pypz plane under magnetic field B )
(B sin θ, 0, B cos θ). The orbits are extended to
infinity along py at θ not too close to π/2 (the region
near θ ) π/2 will be briefly considered at the end of
the paragraph). The frequency ωy of crossing one
Brillouin zone in the py direction is given by eq 30.
At θ ) 0, electrons move parallel to py; their momen-
tum in the z direction is conserved. Therefore, the
interlayer velocity vz ) dε/dpz ∝ sin(pzaz/p) is constant
and the conductivity σzz does not differ much from
its zero-field value. At a finite θ, pz oscillates with
time:

The amplitude of the oscillation, 4ty tan θ/vF, in-
creases with increasing θ. As long as the amplitude
is smaller than the size of the Brillouin zone in the
pz direction, the velocity vz takes only a part of the
allowed values and its average over the periodic
motion vz is, in general, nonzero. However, when
the amplitude becomes exactly equal to 2πp/az, the
average becomes composed of equal positive and
negative contributions over the path and, therefore,
vanishes. The resistivity is maximum at this point.
The next zero of vz and peak in Fzz are expected
when the orbit covers exactly two Brillouin zones in
the pz direction, then three, and so on. The corre-
sponding orientations of the field are determined as

More explicitly (see ref 118), the condition for vz ) 0
is determined by zeros of the Bessel function J0[2tyaz
tan θ/(pvF)]. However, since the argument of the
Bessel function is bigger than 1 in the range of
interest, eq 39 is a good expression for estimating the
period of the Danner-Kang-Chaikin (DKC) oscilla-

ε(p) ) vx(py)[|px| - pX(py)] - 2tz cos(pzaz/p) (36)

pX(py) ) pF + 2ty cos(pyay/p)/vF (37)

Figure 9. Angular dependence of the interlayer resistance
of (TMTSF)2ClO4 at different fields between 1 and 8 T (from
the bottom to the top), at T ) 0.5 K. Data from ref 118.
The 1 and 2 T curves show the superconducting transition
as θ approaches 90°. At higher fields the superconductivity
is suppressed and the DKC oscillations emerge.

pz(t) ) pz(0) +
2ty

vF
tan θsin(ωyt) (38)

tan θN ) N
2πp/az

4ty/vF
) N

πpvF

2tyaz
(39)
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tions. From the positions of the resistivity peaks, one
can evaluate the bandwidth in the y direction,
provided the interchain period and Fermi velocity
along the chains are known. For (TMTSF)2ClO4 in
the anion-ordered state, the value ty ) 0.012 eV was
obtained.118 Above the ordering temperature, ty should
be doubled, yielding 4ty ) 0.096 eV. A slightly larger
value has been found for (TMTSF)2PF6 under a
pressure of ≈10 kbar:112 4ty ) 0.13 eV.

As the field direction becomes very close to the x
axis, namely, when tan θ reaches the critical value,

the geometry of electron orbits undergoes a remark-
able change: Now the orbits become open along pz
rather than along py; in addition, there appear small
closed orbits around maxima and minima of px on the
FS. This is manifested by a narrow peak in the
angular dependence of magnetoresistance around
θ ) π/2 whose width provides an estimate of tz.118 The
mechanism responsible for the peak is basically the
same as that for the peak feature in the case of a
cylindrical FS (see section 2.2.2) and for the “third
angular effect” presented in the next paragraph.

2.3.3. Third Angular Effect
Figure 10 shows the interlayer magnetoresistance

of the q1D metal (DMET)2I3 measured by Yoshino et
al.119 under a magnetic field rotating in the plane
perpendicular to the least conducting direction. It has
a maximum value when the field is perpendicular to
the chains (æ ) (90°). Since the major component of
the Fermi velocity points to the chain direction, such
an orientation corresponds to the maximum Lorentz
force (eq 1) and, thus, to the strongest damping of
the average interlayer velocity. The Lorentz force
gradually decreases when the field is turned toward
the chain direction, leading to a decrease of the
magnetoresistance. However, instead of smoothly

coming to a minimum at æ ) 0°, that is, at B| chains,
the high-field magnetoresistance (7-T curve in Figure
10) exhibits a sudden change in the slope at æ ≈
(15°.

Osada, Kagoshima, and Miura120 have recognized
this kink as a new topological effect characteristic of
a q1D FS and called it “the third angular effect”, TAE
(after the LMA and DKC oscillations as the first two
angular effects in q1D conductors). They reproduced
the effect by numerical calculations of the interlayer
resistivity Fzz based on the q1D spectrum (eq 28) and
semiclassical Boltzmann equation. It was shown that
a minimum of the resistivity occurs not at æ ) 0° but
near the critical angle æc, at which the topology of
electron orbits on the FS changes: all the orbits are
open in the direction pz at æ > æc while small closed
orbits exist around minima and maxima of px at æ <
æc. For a quarter-filled band, as is, for example, the
case of (TMTSF)2X, the critical angle is120

The origin of the anomalous behavior at æ e æc was
initially attributed to the appearance of the small
closed orbits. However, Lebed and Bagmet74 argued
that the minimum of the resistivity can be explained
without involving the closed orbits. They noticed that
the critical angle (eq 41) corresponds to the field
direction at which the orbits are tangent to the
inflection point of the pz ) constant cross section of
the FS. At this direction the number of electrons
having their velocities almost parallel to B is maxi-
mum. The Lorentz force acting on such electrons is
vanishingly small; therefore, their momentum is
conserved and the interlayer velocity does not oscil-
late. As a result, these electrons are the most effective
in the interlayer charge transport. As æ deviates from
æc, the number of the effective electrons diminishes
and Fzz grows. This explanation has been basically
confirmed by a detailed numerical analysis of con-
tributions of different orbits to the interlayer con-
ductivity.121,122 The calculations show that the con-
ductivity in the vicinity of æc is dominated by elec-
trons situating near the inflection line of the FS, no
matter whether the corresponding orbits are closed
or open: even electrons sitting on the closed orbit do
not complete the whole circulation during the scat-
tering time, since the Lorentz force acting on them
is vanishingly small.

It should be noted that the mechanism involved in
the TAE is essentially the same as that in the case
of the peak structure near θ ) π/2 during the xz
rotation of the field. The latter effect is observed both
for cylindrical and sheetlike FSs (see sections 2.2.2
and 2.3.2), and the only difference is that the critical
angle in those cases is determined by the interlayer
transfer integral; thus, the warping of the FS in the
pz direction becomes crucially important.

From the above discussion it is clear that the TAE
can be very useful in estimating the anisotropy of a
q1D conductor in the xy plane. For example, it was
applied to estimate the ratio ty/tx and its dependence
on pressure in the (DMET)2X salts123,124 in which the

Figure 10. Interlayer resistance of (DMET)2I3 versus
azimuthal angle æ, at magnetic field B ) 1 T (open circles),
4 T (crosses), and 7 T (filled circles). The angle is measured
from the 1D axis. At æ = (15° a clear kink representing
the third angular effect (TAE) is seen in the 7 T curve.
(Reproduced with permission from ref 119. Copyright 1995
Physical Society of Japan.)

tan θc =
pvF

2tzaz
(40)

æc ) arctan(x2
ty

tx

ay

ax
) (41)
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DKC oscillations, giving similar information, are not
observed. In principle, one can expect the TAE to be
manifested also in q2D materials such as R- or κ-salts
of BEDT-TTF which combine open and cylindrical
FSs, provided the open sheets are not too strongly
corrugated.

2.3.4. General Orientation of the Field Rotation Plane

We have considered separately rotations of the field
in the planes yz (æ ) π/2, θ varies), xz (æ ) 0, θ
varies), and xy (θ ) π/2, æ varies), which lead to the
LMA, DKC, and TAE effects, respectively. Now, if
both θ and æ are changed in an arbitrary manner,
one could expect, in principle, a kind of superposition
of these three effects. Indeed, the experiment121 with
the field rotating around the z axis and having a
finite Bz component performed on (TMTSF)2ClO4 has
revealed features which could be attributed to the
three effects. In particular, periodic dips of the
magnetoresistance have been observed at angles æ,
θ such that

that is when the field projection on the yz plane
satisfies the LMA condition. Numerical calcula-
tions121 based on the semiclassical model have quali-
tatively reproduced the data. However, one unex-
pected result was noticed: clear LMA-like features
at |N| g 4 could be observed at small æ whereas the
pure yz rotation (i.e. at æ ) π/2), for which the LMA
effect was supposed to be the strongest, revealed
resonances only at |N| e 3.

A detailed theoretical study of the angular effects
in the case of arbitrary æ and θ based on the quantum
mechanical analysis was performed by Osada125,126

and by Lebed and Naughton.127 The latter authors
have also proposed an elegant interpretation in terms
of semiclassical electron orbits on the FS.127 In
particular, it makes clear that tilting the field from
the yz plane gives rise to a new mechanism of
resonances at angles (eq 42) which cannot be reduced
to the LMA effect observed in the case of the purely
yz rotation. This is most likely the reason for the
existence of high-N features found at small æ’s in the
experiment.121 It should be noted that a similar result
concerning LMA-like features in the case of a finite
x-component of the magnetic field was obtained
earlier by McKenzie and Moses.128

2.4. Resonances in the Frequency-Dependent
Magnetotransport

So far we were dealing with magnetotransport
properties in the dc limit, that is, at frequencies ω
much smaller than the characteristic frequency, ωc,
of the periodic motion of electrons in p-space under
a strong magnetic field. On the other hand, high-
frequency (ω ∼ ωc) resonance methods are well-
known to be very effective in studying the electronic
system in conventional metals.28 One should, there-
fore, expect them to be also useful in the case of
organic conductors. Of course, the extreme anisotropy

of these materials leads to important consequences
in the high-frequency magnetotransport, which has
recently become a subject of rather intensive theo-
retical128-135 and experimental135-144 studies (for a
review of earlier works on this topic see, e.g., refs 26
and 129).

As in the dc case, we will focus here on the effects
related to the interlayer conductivity, which will now
essentially depend on the frequency of the electro-
magnetic excitation: σzz ) σzz(ω). For the typical
static magnetic fields used in the experiments, B ∼
1-10 T, the appropriate frequencies of the electro-
magnetic radiation are ν ≡ ω/(2π) j 102 GHz, that
is, belong to the millimeter-wave (or very-far-infra-
red) range. The electrodynamic response from typical
samples of organic conductors under realistic experi-
mental conditions has been described in detail in refs
129, 132, 137, and 138. It was shown that the energy
absorbed from the electromagnetic radiation is mostly
determined by the interlayer conductivity when the
sample is placed in the antinode of the oscillating
magnetic field H̃ polarized parallel to the plane of
the highly conducting layers. In this (actually, most
commonly used) geometry, the screening currents
induced by H̃ flow both perpendicular and parallel
to the layers. However, due to the strong anisotropy,
the skin (penetration) depth corresponding to the in-
plane currents, δ| ∼ 1 µm, is much smaller than that
for the interlayer currents, δ⊥ ∼ 102 µm. Given that
the ratio between the sample dimensions along and
across the layers is usually e10, the interlayer
currents give the dominant contribution to the dis-
sipation. Further, the skin depth δ⊥ greatly exceeds
the mean free path in the cleanest samples as well
as the Larmor radius, rL j 1 µm, for the static fields
above 1 T. Thus, the electromagnetic response is
determined by the bulk interlayer conductivity σzz(ω),
and the classical approach corresponding to the
normal skin effect regime28 can be used.

We start with the consideration of a q2D metal
with a cylindrical FS given by the dispersion relation
(eq 20) (see section 2.2.1) placed in a high static
magnetic field perpendicular to the layers (B | z axis).
The direction of the FS warping given by the effective
hopping vector h ) (ux, uy, d) is tilted from the
cylinder axis. As a result, the interlayer velocity,

oscillates with the cyclotron frequency ωc ) eB/mc,
where mc is the effective cyclotron mass (eq 6). It can
be shown129 that the interlayer conductivity σzz(ω)
determined by vz exhibits a resonance peak when the
excitation frequency ω becomes equal to the cyclotron
frequency, ω ) ωc. Thus, from the resonance fre-
quency one can rather precisely determine the cy-
clotron mass mc. It is, however, important to point
out129 that the origin of this effect is different from
that of the conventional cyclotron resonance: the
latter is directly related to the cyclotron (i.e. closed
orbit) motion both in real space and in momentum
space whereas the present, so-called periodic orbit
resonance (POR), is caused by the cyclotron motion
in momentum space, which results in periodic motion
along the z direction in real space.

tan θ sin æ ) N
ay

az
(42)

vz ) 2t⊥ sin[(pzd + px(t)ux + py(t)uy)/p] (43)
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Another kind of POR emerges, according to ref 129,
due to the fact that the warping of the FS of a real
material is generally dependent on the azimuthal
direction, that is, t⊥ ) t⊥(px, py). For example, in the
case of the twofold, (dxx + dyy) symmetry of the
warping, it is easy to see that the z axis velocity
experiences two cycles during the cyclotron period.
This gives rise to the second harmonic resonance,129

that is, at ω ) 2ωc.
If the static magnetic field B is parallel to the

vector h, the fundamental POR vanishes but the
second harmonic caused by the mechanism described
above still persists. Attributing it, erroneously, to the
fundamental resonance, one would obtain a apparent
cyclotron mass 2 times lower than the actual one.

Further theoretical studies of multiple harmonics
of the POR have been done by McKenzie and Moses128

for the case of a tilted magnetic field B. They have
generalized the dc formula (eq 17) for the conductivity
by including the frequency dependence:

where ωc ) eB cos θ/mc is the angle-dependent
cyclotron frequency. One can readily see from eq 44
that the conductivity exhibits resonant peaks at the
frequencies equal to an integer times the cyclotron
frequency:

The magnitude of the peaks is modulated with
changing the tilt angle θ due to the oscillating Bessel
functions Jn. The latter effect is, of course, closely
related to the AMRO phenomenon introduced in
section 2.2.1. As a result, depending on the exact field
orientation, one can obtain drastically different POR
structures in the conductivity.128

A comprehensive verification of the theoretical
predictions is still awaiting realization. Nevertheless,
a good illustration of multiple resonances, which
seems to be in qualitative agreement with the theory,
has been obtained by Palassis et al.139 on the q2D
compound κ-(BEDT-TTF)2I3. Figure 11 reproduces
the millimeter-wave absorption139 plotted against the
field strength B scaled by the excitation frequency
ω, so that the x axis scale corresponds to cyclotron
mass (mc ) eB/ω). Different traces correspond to
different frequencies and field orientations. The
curves clearly demonstrate multiple harmonic PORs.
The relative magnitude of the resonances strongly
varies with θ; in particular, either the fundamental
POR or the second harmonic becomes dominant
depending on the angle.

Another interesting resonance effect occurs when
the static field B is directed parallel to the conducting
layers. In this case, the conductivity σzz(ω) is
shown134,135 to be mostly contributed by the carriers
which have the extremal value of the in-plane veloc-
ity component perpendicular to the field, v⊥

ext. The
interlayer velocity vz(t) of such carriers oscillates with
the frequency ωc

ext ) eBdv⊥
ext/p, and the resonance

occurs when the frequency of the applied electromag-
netic field matches ωc

ext. This provides an elegant
method of mapping the in-plane Fermi velocity as a
function of the azimuthal angle æ, as has been
demonstrated by Kovalev et al.135 on κ-(BEDT-
TTF)2I3.

Let us now consider a system with a FS open in
the pypz plane and a high magnetic field applied
parallel to this plane: B ) (0, B sin θ, B cos θ). In
the case of multiple finite transfer integrals tmn (see
eq 33), the existence of a resonance effect directly
follows from expression 34 for the conductivity:113 the
denominator of the (m, n)-th term of the sum in eq
34 reduces to unity when

that is when the measurement frequency matches the
frequency of the (m, n)-th Fourier component of the
oscillating interchain velocity.

Experimentally, such resonances, called Fermi-
surface traversal resonances (FTRs), have been ob-
served for the first time by Ardavan et al.136 in
R-(BEDT-TTF)2KHg(SCN)4. Later, Kovalev et al.,144

using a very highly sensitive millimeter-wave tech-
nique,137 carried out a detailed study on the same
compound and found multiple (up to the fifth order)
FTRs at different radiation frequencies and field
orientations. For example, Figure 12 shows traces of
the absorption recorded, with fixed ratios ω/B, while
varying the tilt angle θ.144 The curves strongly
resemble the angle-dependent dc magnetoresistance
observed on this material at low temperatures (see,
e.g., refs 98 and 99), albeit inverted: the absorption
displays a series of peaks corresponding to the peaks
in the conductivity whereas the dc magnetoresis-

σzz ) σ°zz ∑
n)-∞

∞ Jn
2(pFd tanθ/p)

1 + (ω - nωc)
2τ2

(44)

ω ) nωc (45)

Figure 11. Millimeter-wave absorption in κ-(BEDT-
TTF)2I3, versus cyclotron mass, for several frequencies
ν ) ω/(2π) and tilt angles θ of the static magnetic field.
The traces are offset for clarity. (Reproduced with permis-
sion from ref 139. Copyright 2001 Elsevier ScienceDirect.)

ω ) evFB(may cos θ - naz sin θ)/p (46)
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tance, ∝1/σzz, is characterized by sharp dips. How-
ever, in remarkable contrast to the dc case, the peak
positions are now clearly dependent on the strength
of the magnetic field B. This is exactly the fingerprint
of the FTR effect. Based on the FTR condition
generalized for the realistic case of a low symmetry
of the Brillouin zone and an arbitrary orientation of
the static magnetic field, B ) B(sin θ sin æ, sin θ cos
æ, cos θ)

where Bres is the magnetic field at which the reso-
nance occurs at the given fixed millimeter-wave
frequency, and θmn is the tilt angle corresponding to
the (m, n)-th LMA peak in the dc conductivity (see
section 2.3.1), Kovalev et al.144 determined the in-
plane Fermi velocity: vF ) 6.5 × 104 m/s.

Similar studies have been performed by Oshima
et al.142 on another compound characterized by the
open FS, (DMET)2I3. A number of features in the
millimeter-wave transmission attributed to high-
order FTRs have been observed. Based on the ex-
perimental data, the authors have evaluated the
Fermi velocity, vF ) 2.7 × 104 m/s, and the anisotro-
pic transfer integral ratio, tx/ty/tz ≈ 80:25:1.

McKenzie and Moses128 have argued that the
existence of finite high-order transfer integrals tmn
is not a necessary condition for the FTR effect.
According to these authors, the resonances may take
place even if all tmn with n, m > 1 are zero, provided
the magnetic field B has an appreciable component
perpendicular to the open FS plane. In fact, this effect
is similar to that discussed in section 2.3.4 for the dc
conductivity.

On the other hand, it seems that a generalization
of the quantum mechanical analysis of the LMA
effect performed by Lebed et al.117 (see section 2.3.1)
to the case of frequency-dependent conductivity
should lead to FTR resonances associated with the

Fourier components of the velocity vx(py) rather than
with the multiple transfer integrals.

2.5. Problem of the Interlayer Coherence
The basic concept of the semiclassical theory of the

charge transport in metals is the coherent motion of
electron wave packets with well-defined wave vectors
through the crystal.28,31 This necessarily implies that
the size of the wave packet ∆r must be smaller than
the mean free path l. On the other hand, the
requirement of a well-defined wave vector k and,
hence, (quasi)momentum p ) pk sets the lower limit
to ∆r, due to the uncertainty principle: ∆r ∼ p/∆p.
The uncertainty in the momentum ∆p should be, of
course, much smaller than the maximum momentum
in the first Brillouin zone, ∼p/a, where a is a crystal
lattice period. Therefore, the wave packet is supposed
to be spread over many lattice periods. Thus, we come
to the condition

which should be satisfied for the semiclassical model
to be applicable.

In strongly anisotropic organic conductors, the
interlayer transport is limited due to very low values
of the interlayer transfer integral t⊥. If the latter is
small enough or if the scattering rate τ is too high so
that the inequality

holds, an electron scatters before it is able to pen-
etrate from one highly conducting layer to the next
one. Since l < a in that case, the condition in eq 48
cannot be fulfilled and the semiclassical model be-
comes inappropriate for description of the interlayer
transport. One may, therefore, expect some new
effects in that case. In particular, in low-dimensional
strongly correlated systems such as q1D organic
conductors, prominent features associated with de-
viations from the Fermi liquid behavior emerge.77

One can, in principle, distinguish two different
regimes of the interlayer charge transfer in this
situation. In the strongly incoherent regime, the
electron hopping between adjacent layers is entirely
caused by interaction (say, with phonons or impuri-
ties), that is, scattering processes. The electron states
before and after hopping are uncorrelated; the inter-
layer transport is essentially nonmetallic in this case.

It is possible, however, to imagine a weakly inco-
herent situation when an electron coherently tunnels
between the nearest neighboring layers, due to a
finite t⊥, but scatters many times within the layer
before tunneling to the next layer. Thus, even though
the phase of the electron wave function conserves
during a single tunneling process, a sequence of
tunneling events becomes uncorrelated and the sys-
tem loses coherence in the direction perpendicular
to the layers when the condition in eq 49 is satisfied.
As a result, no well-defined momentum in the inter-
layer direction can be prescribed to the electron and
the FS is supposed to become purely 2D.145 Neverthe-
less, at zero magnetic field, the conductivity σzz is
predicted146-148 to preserve the metallic temperature

Figure 12. Angular sweeps of the millimeter-wave ab-
sorption in R-(BEDT-TTF)2KHg(SCN)4, at different fixed
values of the static magnetic field B (offset for clarity), at
T ) 2.2 K. The measurement frequency, ν ≡ ω/(2π) ) 53.9,
is common for all the curves. The positions of the peaks,
corresponding to the FTR effect, are clearly dependent on
B, as indicated by dashed lines for the low-index peaks
(with m ) -1, 0, 1, 2; n ) 1). (Reproduced with permission
from ref 144. Copyright 2002 American Physical Society.)

ω
Bres cos θ

)
evF

p
d cos θ|tan θmn - tan θ| (47)

a , ∆r , l (48)

t⊥ , p/τ (49)
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dependence. It is simply proportional to the intra-
layer mean scattering time τ and, hence, to the
intralayer conductivity σ|:

where t| and a are, respectively, the intralayer
transfer integral and lattice period, and d is the
interlayer spacing. Thus, it is difficult to distinguish
between the weakly incoherent and the coherent
interlayer transport regimes in the absence of mag-
netic field.

A detailed theoretical comparison of the high-field
(ωcτ . 1) magnetotransport in the coherent and
weakly incoherent regimes was performed by Mc-
Kenzie and Moses.145 For the latter case, the conduc-
tivity σzz was obtained by calculating the tunneling
rate between two adjacent layers on the basis of the
metal-insulator-metal junction model. It has been
found that, as long as the magnetic field direction is
not close to the 2D plane, the conductivity displays
the same behavior as in the fully coherent case. In
particular, the AMRO effect and the DKC oscillations
have been reproduced for the cylindrical and open
FSs, respectively. The angular dependence of the
background magnetoresistance has also been ob-
tained identical to that in the coherent regime: it
increases at tilting the field from the z axis and
saturates at high tilt angles θ. Figure 13 shows the
interlayer magnetoresistance calculated145 as a func-
tion of the field orientation for the case of a cylindrical
FS. Both the oscillatory part and the monotonic
background closely resemble the calculations62 based
on the coherent 2D model (cf. Figure 5). The only
difference in the angular dependence develops at θ
very close to 90°: no peak feature is found in the
weakly incoherent regime, by contrast to the coherent
one. As discussed in section 2.2.2, the narrow peak

around 90° appears as a result of qualitative topo-
logical changes of the cyclotron orbits on the 3D
warped FS cylinder (the same effect takes place in
the case of the open Fermi sheets corrugated in the
z direction; see section 2.3.2). It is, therefore, natural
that the effect is absent in the case of a purely 2D
FS associated with the incoherent interlayer trans-
port. Recently Osada et al.149 have confirmed, by
independent quantum mechanical calculations, the
existence of all the angular effects except the peak
feature in the weakly incoherent regime.

The work of McKenzie and Moses145 has stimulated
a number of experimental studies aimed to check the
theory and to clarify the mechanism of the interlayer
transport in various q2D conductors. Of particular
interest are experiments on the most anisotropic of
the known q2D organic compounds, such as κ-(BEDT-
TTF)2I3,150 κ-(BEDT-TTF)2Cu(NCS)2,151 R-(BEDT-
TTF)2MHg(SCN)4,94 and â′′-(BEDT-TTF)2SF5CH2CF2-
SO3.150 In the former two salts, the peak feature has
been found, thus confirming the 3D coherent trans-
port and providing an estimate of the interlayer
transfer integral (see eq 27). The width of the peak
was found to be ≈0.4° for κ-(BEDT-TTF)2I3 and
0.5 ( 0.2° for κ-(BEDT-TTF)2Cu(NCS)2, leading to
similar values of t⊥ = 0.05 meV. This is considerably
smaller than the values p/τ ≈ 0.14 and 0.24 meV,
respectively, obtained from the Dingle factor of the
magnetic quantum oscillations (see section 3). The
obtained relationship between t⊥ and p/τ apparently
contradicts the condition in eq 48. Thus, the validity
of this condition as a prerequisite of the coherent
transport was questioned.151 However, recent studies
of quantum oscillations of the interlayer resistivity67

have shown that the conventional Dingle factor is
mainly determined by macroscopic inhomogeneities
of the sample rather than pointlike defects. Similar
suggestions were made on the basis of comparison
between the behavior of the quantum oscillations and
other properties sensitive to the sample quality.129,152

Unlike microscopic defects (e.g., impurities and va-
cancies), the large-scale spatial inhomogeneities do
not affect the mechanism of the interlayer charge
transfer. Therefore, the effective relaxation rate
entering the condition in eq 48 is likely much lower
than that determined from the quantum oscillations
in organic conductors.

By contrast to the case of the above two com-
pounds, no peak feature has been found in â′′-(BEDT-
TTF)2SF5CH2CF2SO3 within the angular resolution
of 0.01°, suggesting the absence of the interlayer
coherence in this salt.150 The angular dependence of
the magnetoresistance measured150 at T ) 0.5 K at
different fields is presented in Figure 14. The super-
position of the AMRO and giant SdH oscillations
makes the whole picture rather complicated, but we
now focus on the behavior at high tilt angles, around
θ ) 90° (and -90°). At low fields, the resistance
sharply drops down as θ approaches 90 °, due to the
superconducting transition. The superconductivity is
suppressed at B > 20 T. Nevertheless, the peak
feature is completely absent; instead, the magnetore-
sistance exhibits a broad (∆θ g 20°) depression. Such
a considerable decrease of the magnetoresistance

Figure 13. Angular dependence of the interlayer magne-
toresistance of a q2D metal in the weakly incoherent
regime calculated145 for different values of the parameter
ωcτ. The curves are identical to those obtained for the fully
coherent regime at all angles θ except those very close to
90°.

σzz ∼ σ|(t⊥

t|
)2(da)2

(50)
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near the parallel field orientation is not consistent
with either the coherent or weakly incoherent trans-
port scenario.145

A comparative experimental study of the coherent
versus incoherent interlayer transport has been done
by Kuraguchi et al.153 on artificial q2D GaAs/AlGaAs
superlatices with different interlayer barriers. On the
narrow-barrier sample, the usual angular depen-
dence of the interlayer magnetoresistance was
found: Fzz increased with tilting the field toward the
2D plane, showing the peak feature around (90°. By
contrast, no peak and the opposite angular depen-
dence (maximum at low θ; minimum at θ ) 90°) were
observed on the sample with the larger barrier.
Actually, the difference between the behaviors of the
two samples looks quite similar to the difference
between the q1D salts (TMTSF)2X with X ) ClO4 and
PF6 (the latter under pressure).112 In the latter salt
the uncoventional angular dependence of the mag-
netoresistance has been associated77 with field-
induced dimensional crossovers and non-Fermi liquid
effects. It would be very interesting to further study
whether the behavior of the q1D and q2D compounds
in the incoherent-coupling regime has a common
nature.

3. Magnetic Quantum Oscillations
If conduction electrons move on closed orbits in a

strong magnetic field, their electron spectrum be-
comes quantized. The quantization was first sug-
gested by Landau,154 who derived the spectrum of a
free electron gas in a magnetic field in the form

where n ) 0, 1, 2,..., ωc ) eB/me is the cyclotron
frequency of a free electron (see eq 5), and pB is the
momentum component parallel to the field B. This
result is of course a direct consequence of the wave
property of electrons. Intuitively, magnetic field
confines, via the Lorentz force (eq 1), the electron
motion to a circle with the radius rB ) p/eB, in the
plane perpendicular to B. The boundary condition of

this periodic motion is that the circumference of the
orbit be an integer times the electron’s wavelength.
In quantum mechanics, this should lead to a discrete
set of eigenenergies of the system. Therefore, the
spectrum in the plane perpendicular to B (i.e. at a
fixed pB) becomes degenerate, including only a dis-
crete set of allowed energies (eq 51). In p-space, the
only allowed states for electrons lie on coaxial tubes,
so-called Landau tubes, with areas of cross sections
perpendicular to B satisfying the Onsager rela-
tion:155

where γ ) 1/2 in the free electron model. The expres-
sion in eq 52 turns out to be valid for real metals
with arbitrary dispersion relations. The only modi-
fication is that γ can, in general, slightly deviate from
1/2, being weakly dependent on ε and pB.22 In most
cases, the deviation is insignificant, and it will be
neglected in the following.

At T ) 0 electrons occupy the states on the Landau
tubes up to the Fermi level ú. (The chemical potential
ú may, strictly speaking, deviate from the constant
Fermi energy εF. This is particularly important in the
extremely 2D case, as will be discussed in section 3.3.
However, for 3D metals the deviations are usually
negligibly small.22) When magnetic field increases,
the number of occupied states on the largest Landau
tube, which is still inside the FS, decreases and
vanishes infinitely rapidly when the tube touches the
extreme cross section of the FS, Sextr. With a continu-
ous change of B, the Landau tubes subsequently cross
Sextr, with a period in the inverse-field scale:

This leads to a periodic variation of the free energy
of the electronic system and the density of states and,
consequently, to oscillations of various physical prop-
erties such as magnetization, heat capacity, elastic
constants, conductivity, thermoelectric power, and so
forth. From the period of oscillations (eq 53) one can
immediately determine the corresponding cross-
sectional area of the FS. In addition, as will be shown
below, the oscillation amplitude gives information on
some other important properties of the electronic
system.

The quantum oscillations of resistivity and mag-
netization, that is, the Shubnikov-de Haas (SdH)
and de Haas-van Alphen (dHvA) effects, were his-
torically the first experimental methods of probing
the FS and, thus, were most extensively used in
Fermiology of conventional metals.21 A brilliant
comprehensive review on the standard 3D model of
magnetic quantum oscillations and on its applications
has been done by Shoenberg.22 In the next section
we will summarize the main results of the theory and
illustrate how they can be used to study the conduct-
ing system of organic metals. In section 3.2 some
examples will be presented, showing that the ex-
tremely high anisotropy of our materials may lead
to substantial deviations of the oscillations from the
standard theory, requiring its modification. The

Figure 14. Angular dependence of the interlayer magne-
toresistance of â′′-(BEDT-TTF)2SF5CH2CF2SO3 at T )
0.5 K for different fields up to 33 T. (Reproduced with
permission from ref 150. Copyright 2002 American Physical
Society.)

ε(n,pB) ) (n + 1/2)pωc +
pB

2

2me
(51)

Sn(ε,pB) ) (n + γ)2πpeB (52)

∆(1B) ) 2πep/Sextr (53)
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theoretical models of the dHvA effect in extremely
anisotropic materials and their applications to or-
ganic conductors will be considered in sections 3.3
and 3.4, respectively. Finally, some remarkable mani-
festations of the q2D character of the SdH effect in
organic conductors will be discussed in section 3.5.

3.1. Standard Theory and Applications to Organic
Conductors

3.1.1. Lifshitz−Kosevich Formula for the de Haas−van
Alphen (DHvA) Effect

Oscillations of the energy of the electronic system
with changing magnetic field give rise to oscillating
magnetization, which can be obtained as the field
derivative of the Gibbs thermodynamic potential Ω
at constant temperature and chemical potential:
M ) -(∂Ω/∂B)T,ú. The general formula for the dHvA
oscillations in 3D metals has been derived by Lifshitz
and Kosevich.156 Here we will only present the results
of the theory. The principles of the derivation can be
found in the textbooks on the metal theory, see, for
example, refs 27-29; a thorough analysis is given in
Shoenberg’s monograph.22

If the FS contains only one extremal cross section
perpendicular to the field, the oscillatory part of the
magnetization along B can be written as a sum of
harmonics periodic in the 1/B scale

with the fundamental frequency

The sign “+” or “-” in the argument of the sine
function is chosen for the minimum or the maximum
cross-sectional area, respectively. The harmonic am-
plitudes are expressed as

where mc is the cyclotron mass (eq 6); (S′′)extr )
(∂2S/∂pB

2)extr characterizes the FS curvature along B
around the extremal cross section; and the damping
factors RT, RD, and RS caused by finite temperature,
scattering effects, and Zeeman splitting, respectively,
will be described in the next subsection. The expres-
sion for magnetization oscillations (eq 54) with
frequency (eq 55), amplitudes (eq 56), and the damp-
ing factors defined in section 3.1.3 is called the
Lifshitz-Kosevich (LK) formula.

As will be shown below, RT(r) and RD(r) decrease
exponentially fast with increasing the harmonic
index; in addition, the harmonic contributions are
decreased by the prefactor r-3/2. Therefore, it is often
enough to consider the behavior of the fundamental
harmonic, r ) 1.

If the FS contains multiple extremal cross sections,
they additively contribute to the oscillations. In the

case of a weakly warped cylindrical FS, the oscilla-
tions are caused by two extremal cross sections,
maximum Smax and minimum Smin. Since the differ-
ence ∆S ) Smax - Smin is small, one can suggest the
electron parameters entering eq 56 are approxi-
mately the same. Then, considering only the first
harmonic, the dHvA signal is

where F ) (Smax + Smin)/(4πep) is the average of the
frequencies Fmax and Fmin corresponding to the maxi-
mum and minimum cross sections, respectively, and

Figure 15 shows an example of the dHvA signal
from â-(BEDT-TTF)2IBr2.70 The fundamental fre-
quency F ≈ 3840 T yields the average cross section
of the FS cylinder ≈ 4.05 × 10-49 m2 kg2/s2 that
corresponds to ≈53% of the 2D Brillouin zone area,
in good agreement with the results of the AMRO
analysis3 (see section 2.2). In line with eq 57, the
amplitude of the fundamental harmonic is modulated
with a low frequency determined by the warping of
the FS: two nodes are clearly seen at about 12.5 and
17 T, respectively. For the model q2D zero-field
spectrum (eq 13), one has F/B ) εF/(pωc) and ∆F/B )
4t⊥/(pωc), and the frequency of the beats provides an
evaluation of the anisotropy ratio:

Taking ∆F ) 50-55 T from the experiments,67,70 this
ratio is estimated to be in the range 1/155 to 1/140
for â-(BEDT-TTF)2IBr2. It is consistent with what is
obtained from the peak feature in the angle-depend-
ent semiclassical magnetoresistance (see section
2.2.2).

M̃ ) -∑
r)1

∞ 1

r3/2
Mr sin[2πr(FB -

1

2) (
π

4] (54)

F )
Sextr

2πep
(55)

Mr ) ( e
2πp)3/2 SextrB

1/2

π2mc|S′′|extr
1/2

RT(r) RD(r) RS(r) (56)

Figure 15. dHvA oscillations in â-(BEDT-TTF)2IBr2 at
T ) 0.4 K, at the field slightly tilted from the direction
normal to the layers. The oscillations exhibit the beating
behavior owing to the slight warping of the FS cylinder.
The inset shows the fast Fourier transformation of the
data. (Reproduced with permission from ref 70. Copyright
1996 EDP Sciences.)

M̃ ≈
M1[sin(2π

Fmax

B
- π - π

4) + sin(2π
Fmin

B
- π + π

4)] )

2M1 sin[2π(FB - 1
2)] cos(2π∆F

2B
- π

4) (57)

∆F ) Fmax - Fmin ) ∆S/(2πep) (58)

2t⊥

εF
) ∆F

2F
(59)
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It is instructive to trace the oscillation behavior
while changing the magnetic field orientation. The
cross-sectional area and, hence, the frequency F are
obviously the smallest when the field is parallel to
the axis of the FS, that is, perpendicular to the highly
conducting plane, θ ) 0 in Figure 16. With tilting
the field, the areas of both the largest and the
smallest orbits increase so that F ∝ 1/cos θ, as shown
in Figure 16a.61 By contrast, the frequency difference
∆F presented in Figure 16b displays highly non-
monotonic behavior,61 going to zero at certain θ’s.
This phenomenon is closely related to the AMRO
effect discussed in section 2.2.1: the beat frequency
vanishes at the angles defined by eq 21 at which all
the orbits on the FS have the same area and the
semiclassical magnetoresistance is maximum. In-
deed, the data in Figure 16b are nicely fitted using
eq 14 modified to include the asymmetry of the FS
warping in the way it was done in eq 21.

As was already mentioned in section 2.2.1, the
amplitude of the quantum oscillations is strongly
enhanced at the AMRO peaks, that is, at the same
angles at which ∆F ) 0. This is naturally because
all the orbits on the FS are extremal and contribute
to the oscillations at these angles. Strictly speaking,
this statement is valid only when the modulation of
the FS is perfectly harmonic. If more than one
harmonic appreciably contribute to the modulation,
the positions of the peaks of the quantum oscillation
amplitude are predicted to shift from the AMRO
peaks.157 A careful inspection of the angle dependence
of the SdH amplitude in â-(BEDT-TTF)2IBr2 reveals
that its maximum is shifted by ≈1° with respect to
the first AMRO peak.158 A detailed study of this shift
might be useful for determination of the exact form
of the FS warping.

Finally, it should be noted that the beating behav-
ior as a signature of the 3D warped FS can only be

observed when the warping is bigger than the dis-
tance between subsequent Landau tubes near the
Fermi level. For the model q2D dispersion (eq 13),
this condition can be expressed as

where W⊥ is the conduction bandwidth in the inter-
layer direction. As will be seen from the following
(sections 3.2 and 3.4), this requirement is often not
fulfilled in organic metals.

3.1.2. Shubnikov−de Haas (SdH) Oscillations
The theory of the SdH oscillations is more complex

than that of the dHvA effect, since the former are
entirely caused by deviations from the τ-approxima-
tion and one should, in principle, consider a detailed
problem of scattering processes modified by a quan-
tizing magnetic field.159 Fortunately, it is usually
possible to obtain a satisfactory description by fol-
lowing Pippard’s idea23,160 that the scattering prob-
ability and, hence, the resistivity are proportional to
the density of states around the Fermi level, D(ú).
The latter can be shown (see, e.g., ref 22) to be
proportional to the field-derivative of magnetization:

As a result, the oscillatory part of the conductivity
can be expressed in the form

where

and σ0 is the background conductivity.
Equations 54-56, 62, and 63 with the damping

factors RT, RD, and RS introduced below are the basic
formulas for a quantitative analysis of the dHvA and
SdH oscillations in 3D metals.

3.1.3. Damping Factors
The first damping factor in eqs 56 and 63, RT,

originates from the temperature induced smearing
of the Fermi distribution function. Roughly speaking,
a metal with the Fermi energy ε°F and T > 0 can be
considered as a superposition of metals with T ) 0,
having Fermi energies distributed around ε°F. The
oscillation frequencies associated with such metals,
F ∝ Sextr, would slightly differ from each other. This
should lead to smearing the phase of the resulting
oscillations and, hence, to a decrease of the ampli-
tude. The exact expression for RT is156

Figure 16. Angular dependence of the fundamental dHvA
frequency F (a) and of the difference frequency ∆F (b) in
â-(BEDT-TTF)2IBr2. (Reproduced with permission from ref
61. Copyright 1993 Elsevier ScienceDirect.)

W⊥ ≡ 4t⊥ > pωc (60)
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where

is the cyclotron mass normalized to the free electron
mass me, and K ≡ 2π2kBme/(pe) ≈ 14.7 T/K. Equation
64 determines the temperature dependence of the
oscillation amplitudes in eqs 56 and 63. By fitting
eq 64 to the experimental data, one obtains the
effective cyclotron mass. At large arguments x,
sinh(x) ≈ exp(x)/2, so that the temperature depen-
dence (eq 64) is reduced, at high enough T, to

so that µ is directly extracted from the slope of the
linear plot ln(Mr/T) or ln(ar/T) versus T.

The values mc determined for organic metals usu-
ally range between =2me and 7me; that is, they
significantly exceed the free electron mass.25 The
highest, to date, value, µ ) 12.4 ( 1.1, has been
recently reported for â-(BDA-TTP)2SbF6.49 A com-
parison between mc and the so-called band mass,
which is obtained from usual band structure calcula-
tions in neglect of electron-electron and electron-
phonon interactions, gives information about the role
of many-body interactions in the material.22 For
example, such a comparison performed by Merino
and McKenzie161 for several organic metals reveals
appreciable renormalization of µ due to many-body
effects. This is in line with a number of other
independent evidences for the importance of electron-
electron and electron-phonon interactions in these
compounds discussed, for example, in refs 1, 11, 12,
and 162.

In a perfect crystal (the scattering rate 1/τ ) 0),
the quantized Landau subbands given by eq 51 are
infinitely sharp in the plane perpendicular to the
magnetic field. According to the uncertainty principle,
a finite relaxation time broadens the subbands.
Usually the broadening is described by the Lorentz
distribution function with the half-width Γ ) p/2τ.22

The corresponding, so-called Dingle damping factor
to the oscillation amplitude is163,164

where TD ) p/(2πkBτ) is called the Dingle tempera-
ture. Provided µ is known from the temperature
damping factor, the relaxation time can be estimated
from the field dependence of the oscillation amplitude
by fitting it to eq 56 or 63 with the Dingle factor
(eq 67).

Typical values of TD obtained for organic metals
are of the order of 1 K, that corresponds to τ ∼ 10-12

s. A rough estimate for the mean free path in the
highly conducting plane, l ∼ 102-103 Å, can be made
using typical Fermi velocities1 of ∼104-105 m/s. The
upper limit for TD is set by experimental conditions
for observation of the oscillations; usually at TD >
3-4 K they become vanishingly small in fields e
30 T. The lowest, to the best of our knowledge, Dingle
temperature, TD ≈ 0.25 K, was reported for clean

samples of R-(BEDT-TTF)2KHg(SCN)4 (in the high-
field state),165 κ-(BEDT-TTF)2I3,166 and â′′-(BEDT-
TTF)2SF5CH2CF2SO3.167 It should be noted that all
three materials are extremely highly anisotropic. As
will be discussed below, the standard Lifshitz-
Kosevich (LK) formalism presented here cannot be
applied to such systems. The values TD for the former
two salts were obtained from a numerical model
treatment suggested for 2D metals.165 In the case of
the latter salt, the data were taken in the low-field
region where deviations from the LK model are
supposed to be insignificant. An upper limit of 0.1 K
was more recently suggested for TD in a crystal of
κ-(BEDT-TTF)2I3

168 on the basis of a low-field SdH
experiment. However, this estimation should be
taken with caution, since the experimental conditions
corresponded to the region where the material ex-
hibits highly unusual, far from being understood,
properties (see refs 168-170 and references therein).

Another important point to be kept in mind is that
τ derived from the Dingle factor is usually consider-
ably lower than the normal transport relaxation time
τtr.67,129,171 The reason is that the amplitude of quan-
tum oscillations is highly sensitive to long-range
scattering defects, such as dislocations, and macro-
scopic spatial inhomogeneities,22 which are unimpor-
tant for the normal classical transport. A special case
in which the relaxation time close to τtr can be
extracted from quantum oscillations will be presented
in section 3.5.1.

The third damping factor, RS, describes the effect
of the Zeeman spin splitting: each Landau subband
(eq 51) is, in fact, split into two with the energy
difference

where g is the Landé factor and â0 ) ep/(2me) is the
Bohr magneton. For free electrons, g ≈ 2 and ∆ε ≈
peB/me is equal to the Landau subband spacing pωc.
Therefore, at a fixed pB, the n-th Landau subband
with spin parallel to B and the (n - 1)-th Landau
subband with spin antiparallel to B cross the Fermi
level at the same field, so that the oscillations are
contributed in-phase by both spin subbands. How-
ever, in real metals generally ∆ε * pωc and there is
a phase shift between contributions from subbands
with opposite spins. This leads to a reduction of the
oscillation amplitude by the factor

Both the g-factor and the effective cyclotron mass in
eq 69 are renormalized by electron-electron and
electron-phonon interactions. In particular, g may
significantly differ from the value gs measured in
electron-spin-resonance experiments, which is not
affected by many-body correlations. If µ is known
from Mr(T), RS provides evaluation of the g-factor.
Comparing the latter with gs, one obtains information
on the influence of many-body interactions on spin
splitting.

As mentioned above, the area of cyclotron orbits
in a q2D metal increases proportional to 1/cos θ with

µ ) mc/me (65)

RT(r) ∝ T
B

exp(-KrµT/B) (66)

RD(r) ) exp(- πr
ωcτ) ) exp(-KrµTD/B) (67)

∆ε ) gâ0B (68)

RS(r) ) cos(π2rgµ) (69)
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tilting the field. This leads to a decreasing cyclotron
frequency, ωc ∝ cos θ or, equivalently, increasing
cyclotron mass, µ(θ) ) µ(0)/cos θ. Substitution of this
θ-dependence in eq 69 yields a periodic vanishing of
RS: it becomes zero every time when rgµ(0)/cos θ is
an odd integer. Thus, by finding the angles at which
the amplitude of the r-th harmonic goes to zero, one
can rather precisely determine the product gµ(0).
This spin-zero method has been frequently used in
dHvA and SdH studies of organic metals; see refs 25
and 172 for a review.

A remarkable manifestation of the spin-splitting
effect has been found in λ-(BETS)2FeCl4. This mate-
rial is of particularly high interest since the recent
discovery of high-magnetic-field-induced supercon-
ductivity.14 At zero field it is in an antiferromagnetic
insulating state below 9 K,173 which is, however,
completely suppressed by magnetic fields above 10
T,174,175 and, eventually, the superconducting state is
stabilized in the field between 17 and 42 T directed
parallel to conducting layers.14,176 Two scenarios were
originally proposed to explain this field-induced
superconductivity.14 According to one of them, a high
magnetic field confines the electron motion to a single
layer, thus causing a dimensional crossover from q2D
to purely 2D transport and consequent stabilization
of superconductivity as predicted by a number of
theoretical models.177-182 Another possible mecha-
nism is the Jaccarino-Peter compensation effect:183

due to the exchange interaction J with magnetic
moments localized on Fe3+ ions in the anion layers,
conduction electrons experience an exchange field BJ
directed against the external field B. The material
becomes superconducting when |Beff| ) |B - BJ| is
smaller than the paramagnetic Chandrasekhar-
Clogston limit, provided the orbital pair-breaking is
suppressed.176

Figure 17 shows the oscillating part of magnetore-
sistance in λ-(BETS)2FeCl4 as a function of inverse
field.184 The amplitude of the fundamental harmonic
is clearly modulated, yielding the split peak, F1 ) 608
T and F2 ) 738 T, in the Fourier transform shown in
the inset in Figure 17. At first sight, this beating
behavior is a signature of a warped FS, as was
discussed above (see eqs 57 and 58). However, the
angular dependence of both frequencies, which is
presented in Figure 18, reveals a monotonic change
of the difference F2 - F1, ∝1/cos θ, in sharp contrast
to the expected oscillating behavior, as, for example,
shown in Figure 16b. An alternative explanation
proposed by Cépas et al.185 invokes the spin-splitting
effect. In the presence of an internal field, the spin-
splitting factor (eq 69) is modified and becomes field-
dependent:22

(here we set r ) 1 to analyze the fundamental
harmonic). Now RS is modulating the oscillation
amplitude (eqs 56 and 63) periodically in 1/B, simi-
larly to the effect of the FS warping (eq 57). However,
the angular dependence of the beat frequency,
Fbeat ) gµBJ/4, being determined by that of the

cyclotron mass µ, is simply proportional to 1/cos θ,
in agreement with the experimental observation. The
exchange field, BJ ) 32 T, evaluated from Fbeat is in
excellent agreement with the value expected from the
phase diagram, assuming the Jaccarino-Peter sce-
nario,176 thus providing a solid argument in favor of
the latter. Similar estimations have been performed
on a few compounds of the λ-(BETS)2FexGa1-xCl4
series,186 and a reasonable correlation between the
internal field and the concentration, x, of the mag-
netic ions Fe3+ was found.

RS ) cos[π2g(1 -
BJ

B )µ] (70)

Figure 17. Oscillatory part of the magnetoresistance of
λ-(BETS)2FeCl4 as a function of inverse magnetic field. The
dotted line is the result of a numerical simulation based
on the LK formula with the parameters µ ) 1.4 and TD )
0.5 K. The amplitude of the oscillations is modulated,
revealing two frequencies close to each other, as shown by
the Fourier transformation in the inset. (Reproduced with
permission from ref 184. Copyright 2001 American Physical
Society.)

Figure 18. Angular dependence of the SdH oscillation
frequencies in λ-(BETS)2FeCl4. Both frequencies as well as
the difference between them follow the 1/(cos θ) law. The
inset shows the LK fit to the temperature dependence of
the oscillation amplitude (see eq 64), yielding the cyclotron
effective mass mc ) 4.1me. (Reproduced with permission
from ref 184. Copyright 2001 American Physical Society.)
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The same effect has very likely been observed in
κ-(BETS)2FeBr4.187,188 This compound is the first
ambient-pressure antiferromagnetic organic super-
conductor.189-192 SdH oscillations exhibit pronounced
beats with the frequency of ≈100 T187,188 originally
attributed to the FS warping. Cépas et al.185 have
proposed that the beats have the same nature as in
λ-(BETS)2FeCl4. They have estimated the internal
field and predicted field-induced superconductivity
in the range 11-13 T. Indeed, recent experiments on
the resistivity and thermal conductivity193-195 have
provided convincing evidence of the field-induced
superconductivity in the field range centered at ≈12.5
T, in remarkable agreement with the theoretical
prediction.

3.1.4. Magnetic Breakdown
The described above scheme of the Landau level

quantization and the LK theory have been derived
under the basic assumption that the effect of mag-
netic field is reduced to a coherent cyclotron motion
of electron wave packets along well-defined trajec-
tories, both in real space and p-space. This quasi-
classical approximation is valid when the character-
istic cyclotron energy pωc is much smaller than the
relevant band energies ∼εF. However, if two conduct-
ing bands come close to each other at the Fermi level,
an electron can tunnel through the small gap be-
tween the bands in a high enough field.196 This
phenomenon, called magnetic breakdown (MB), can
be represented in p-space as switching between orbits
corresponding to different parts of the FS, as il-
lustrated in Figure 19. The FS shown in Figure 19
consists of closed pockets and open sheets coming
close to each other at the MB junctions 1, 2, 3, and
4. In a magnetic field applied perpendicular to the
pxpy plane, electrons move on the FS in the direction
shown by the arrows. When an electron starting, say,
from point a approaches MB junction 1, it can either
keep staying on the same closed orbit R or tunnel
through the gap, switching to the open sheet. The
tunneling probability Υ exponentially increases with
field:197

where

is a characteristic breakdown field and ∆g is the
interband gap at the MB junction. It follows from
eqs 71 and 72 that the MB becomes significantly
pronounced when the cyclotron energy is pωc ∼
∆g(∆g/εF), which may be much lower than the inter-
band gap.

At very low (B , BMB) and very high (B . BMB)
fields, one can use the quasiclassical approach, since
the electron trajectories are well defined: in the
former case, the electrons always stay on the same
semiclassical orbits; in the latter case they freely pass
through the MB junctions, producing the large closed
trajectory â shown by the dotted line in Figure 19.
However, if B ∼ BMB, the trajectories are no longer
well defined and one has, in principle, to solve
explicitly a very sophisticated quantum-mechanical
problem of the electron spectrum in the presence of
competing incommensurate lattice and magnetic field
potentials.198

On the other hand, Falicov and Stachowiak199 have
shown that the dHvA effect can still be satisfactorily
described by considering quasiclassical electron wave
packets that move on all possible closed orbits, that
is, return back to a starting point using all possible
paths in the MB network. In this approach, the initial
wave of unit amplitude entering a MB junction is
separated into a transmitted wave with amplitude υ
and a reflected wave with amplitude ê, such that200,201

The conservation of particles leads to the phase
difference of π/2 between the transmitted and re-
flected waves. While the absolute phases are not
defined, it is conventionally assumed199-201 that the
reflected phase preserves the initial phase and the
transmitted one changes by π/2. It is therefore
convenient to rewrite the tunneling amplitude as iυ.

Further on, as the wave packet traverses the
quasiclassical (i.e. away from MB junctions) path λ
in p-space in time tλ, its phase acquires an additional
change:

while its amplitude is being damped due to the finite
scattering rate 1/τ by the factor exp(-tλ/2τ). It follows
from eq 74 that in the absence of MB the phase
change over a complete closed orbit is equal to
S/(peB), where S is the corresponding enclosed area,
so that the boundary condition for the phase exactly
coincides with Onsager’s quantization rule (eq 52).

Considering the described evolution of the phases
and amplitudes, Falicov and Stachowiak199 arrived
at the expression for the oscillatory part of the free
energy and, therefore, magnetization reproducing the
LK formulation in which all possible closed orbits

Figure 19. Schematic view of a linear-chain MB network.
The MB junctions are indicated by crosses labeled as 1, 2,
3, and 4, respectively. At low magnetic fields an electron
moves, in a perpendicular magnetic field, on the classical
orbits, e.g., on the closed orbits R. Arrows indicate the
allowed direction of the cyclotron motion at the given field
direction. At high fields the electron can tunnel through
the MB junctions, producing, for example, the closed orbit
a-1-2-d-3-4-a labeled as â.

BMB =
m
ep

∆g
2

εF
(72)

υ ) xΥ; ê ) x1 - Υ (73)

φλ ) 1
peB∫λpx dpy (74)

Υ ) exp(-BMB/B) (71)
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additively contribute but each contribution is mul-
tiplied by the MB reduction factor:

where l1,j and l2,j are the numbers of points at which
the electron encircling the j-th orbit must tunnel
through and be reflected from a MB junction, respec-
tively. Equation 75 suggests that the MB prob-
abilities are the same for all the MB junctions.
Otherwise, one should of course substitute different
probability amplitudes corresponding to relevant
junctions.

Turning to the practical realization of the MB
phenomenon, organic metals provide a unique labo-
ratory for it. Since the Fermi energies of these
materials are quite low, typically from few tens to
one hundred millielectronvolts, even gaps which are
not very small compared to εF can give rise to MB
effects at accessible magnetic fields. For example,
Honold et al.202 have reported on a MB in the high-
field state of R-(BEDT-TTF)2KHg(SCN)4 through the
gap of =23 meV that is of the same order as εF for
this compound. Further, the characteristic Brillouin
zone dimensions are considerably smaller than those
of conventional metals. Therefore, the electron phase
coherence can be preserved on the entire FS in clean
samples and coherent MB effects can be clearly
observed. Finally, due to the extremely weak depen-
dence of the FSs on the interlayer momentum, the
MB junctions are represented in p-space by lines
(perpendicular to the conducting layers) rather than
points, as is the case in usual 3D metals. Therefore,
the condition of the exact orientation of the plane of
a cyclotron orbit with respect to the crystal axes is
not as crucial as it is for 3D materials. For example,
quantum oscillations corresponding to an orbit pass-
ing through four MB junctions were observed by
Meyer et al.203 on κ-(BEDT-TTF)2Cu(NCS)2 at tilt
angles of the magnetic field ranging from 0° up to
55°. Even at higher tilt angles, the coherent MB has
been reported for another q2D organic conductor,
(BEDT-TTF)8Hg4Cl12(C6H5Br)2, by Vignolles et al.204,205

This contrasts with the behavior in 3D materials: for
example, in magnesium the phase coherence on
orbits containing more than 2 MB junctions is broken
already at tilt angles less than 0.1°.206

The best studied organic compound showing the
MB behavior is κ-(BEDT-TTF)2Cu(NCS)2 (see refs 25
and 26 for a detailed review). The topology of its FS5

is actually identical to the textbook linear-chain MB
network shown in Figure 19 (cf. Figure 1c). The MB
effect in this compound was discovered by Heidmann
et al.207 They have observed SdH oscillations with the
frequency Fâ ) 3840 T corresponding to a phase-
coherent motion over orbit â in Figure 19 including
tunneling through four MB junctions. This was
actually the first experimental confirmation of the
existence of the open FS sheets predicted by the band
structure calculations.5 Besides Fâ, the SdH spec-
trum207 contained a strong contribution from the
semiclassical R-orbit, FR ≈ 600 T and its higher
harmonics, 2FR and 3FR, as well as combination
frequencies Fâ + nFR with n ) -2, -1, and +1. These

results were soon confirmed by Sasaki et al.208 The
MB field of about 16 T has been estimated from the
magnetoresistance oscillations208,209 that would cor-
respond to the breakdown gap ∆g = 5 meV. Later
measurements of the dHvA effect203,210 have given
about twice as large an MB field, BMB ) (30.5 ( 2)
T, yielding ∆g = 7 meV = 0.1εF.

Similarly to Fâ, the frequency Fâ + FR is readily
explained in terms of the described Falicov-Sta-
chowiak theory:199 it can be attributed to the closed
orbits a-1-2-d-3-c-2-d-3-4-a and a-1-b-4-
a-1-2-d-3-4-a in Figure 19, both enclosing the
area equal to the sum of R- and â-orbit areas. On the
other hand, to generate the difference frequency such
as Fâ - FR, one has to consider a closed orbit like
a-1-2-c-3-4-a. However, the motion along the
path 2-c-3 is only allowed in the opposite direction,
as indicated by the arrow in Figure 19. Therefore,
such a closed orbit is forbidden and the frequency
Fâ - FR (as well as Fâ - 2FR) should not exist
according to the Falicov-Stachowiak model.

To understand the occurrence of such “forbidden”
frequencies in the SdH spectrum, one has to take into
account the effect of quantum interference (QI) be-
tween the electron wave packets traveling from one
point of the MB network to another via different
paths. This effect, in its simplest realization of two
open orbits connecting two MB junctions (so-called
Stark interferometer), has been discovered in mag-
nesium and thoroughly analyzed by Stark and co-
workers.206 A generalized theory of the QI in a
common case of a coherent MB network was devel-
oped by Kaganov and Slutskin.198 This theory pre-
dicts complicated spectra of oscillations of kinetic
properties, such as conductivity, including various
linear combinations of fundamental harmonics.

The QI effect as a possible origin of the difference
frequencies in κ-(BEDT-TTF)2Cu(NCS)2 was sug-
gested by Caulfield et al.209 and investigated in detail
by Kartsovnik et al.211 and Harrison et al.212 To
illustrate how it works in this case, let us turn again
to the MB network in Figure 19. Imagine only two
of various ways that an electron wave packet start-
ing, with unit amplitude, from point e′ propagates to
point e can be realized: path λ1 ∼ e′-1-2-d-3-4-
a-1-2-e and path λ2 ∼ e′-1-2-d-3-c-2-e. (Of
course, in reality there are other ways, the most
probable being e′-1-2-e, but we omit them for the
moment, for the sake of simplicity.) Taking into
account the changes of the amplitude and phase at
the MB junctions as well as the phase change (eq 74)
occurring upon traversing the quasiclassical parts of
the orbit, one can express the resulting wave func-
tions as

and

for the electrons moving along the paths λ1 and λ2,
respectively. Here æe′e is the phase change (eq 74)
acquired on the quasiclassical path e′-1-2-e, æR )
SR/(peB), and æâ ) Sâ/(peB). Then, the total prob-

RMB,j ) (iυ)l1,jêl2,j (75)

γ1 ) ê2υ4 exp[i(æe′e + æâ)] (76)

γ2 ) - ê2υ2 exp[i(æe′e + æR)] (77)
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ability for an electron to pass from point e′ to point e
is198,206

The two last terms in eq 78 describe the interfer-
ence between the wave packets propagating via
different paths and are equal, respectively, to
-ê4υ6 exp[i(æâ - æR)] and -ê4υ6 exp[-i(æâ - æR)].
Therefore, their sum is

The probability of propagating between points e′ and
e obviously affects the open orbit contribution to the
magnetoresistance. Thus, one should expect the
oscillating term with frequency Fâ - FR to contribute
to the SdH spectrum. Taking into account other
possible paths between points e′ and e, one obtains
the other “forbidden” frequencies such as Fâ - 2FR,
2Fâ - 2FR, and so forth observed in the experiment.

As mentioned above, the amplitude of the electron
wave packet is damped on the quasiclassical orbit due
to scattering. This leads to the usual Dingle damping
factor like in the LK theory (eq 67). It is easy to see
that the normalized cyclotron mass µ in eq 67 should
be equal to the sum of the cyclotron masses corre-
sponding to the interfering paths: for example, µ )
µâ + µR for the oscillations with F ) Fâ + FR. More
interesting is the temperature dependence of the
oscillation amplitude. Like in the LK theory, it is
determined by the energy dependence of the oscilla-
tion phase;198,206 however, now it is the difference
between the phases of the interfering trajectories:

Therefore, the corresponding thermal damping factor,
having the same form as in eq 64, contains the mass
equal to the difference between the cyclotron masses
on paths λ1 and λ2. In particular, the mass corre-
sponding to the oscillations Fâ - 2FR was estimated211

as µâ-2R ) 0.9 ( 0.1, that is, 4 and 7 times smaller
than the masses of the pure FR and Fâ oscillations,
respectively. It was further reduced to e0.3 by
applying the pressure of =8 kbar,211 allowing the
direct observation of the oscillations at temperatures
as high as 9 K at which all the other quantum
oscillations were completely suppressed. Of course,
even with the zero effective mass, quantum oscilla-
tions should eventually be killed by rising tempera-
ture. On one hand, this is caused by the scattering
rate increasing with temperature.211,213,214 On the
other hand, the LK theory may be violated in the case
of the zero mass.215 These questions have only
marginally been investigated thus far (see, e.g., ref
216). It would be therefore very interesting to per-
form further experimental and theoretical studies of
the QI oscillations with the zero effective mass.

According to the theory,198 the QI phenomenon is
manifested solely in the kinetic properties of the

electronic system; the energy spectrum remains
unaffected. Since magnetization is an inherently
thermodynamic quantity, it should be insensitive to
the QI. However, significant contributions of the
“forbidden” frequencies have been also found in the
dHvA signal from κ-(BEDT-TTF)2Cu(NCS)2.203,210 The
possible origin of the “forbidden” frequencies in
magnetization oscillations will be discussed in section
3.4.3.

One can compare the manifestations of the MB in
κ-(BEDT-TTF)2Cu(NCS)2 with those in other κ-type
salts. The closest analogues of this compound, in the
sense of physical properties, are the superconductors
κ-(BEDT-TTF)2Cu[N(CN)2]Br and κ-(BEDT-TTF)2Cu-
[N(CN)2]Cl (the latter is a Mott insulator at ambient
pressure but becomes metallic and superconducting
at pressures g 300 bar).1,11,17 According to the band
structure calculations,17,34 the major features of the
FS are predicted to be the same for all three com-
pounds. However, due to the presence of the inversion
symmetry in the crystal structure of the latter two
salts, the conducting bands are degenerate at the
Brillouin zone boundary, so that the interband gap
is predicted to be zero. Therefore, the quantum
oscillations should correspond to the complete MB
regime; that is, only the big â-orbit should be realized.
Indeed, the frequency Fâ dominates the ambient-
pressure oscillation spectrum in the salt with the
anion Cu[N(CN)2]Br.217-221 However, the frequency
FR has also been detected in both the SdH and dHvA
signals.221 This means that the interband gap ∆g does
exist in this compound though it is much smaller
than in the Cu(NCS)2 salt. In principle, the existence
of a tiny gap, <1 meV, may be caused by a finite
spin-orbit interaction28 which is not taken into
account in the band structure calculations.17,34 Un-
der pressure the oscillation spectrum considerably
changes: the R-orbit disappears and instead a fre-
quency FR′ ≈ FR/4 is observed.218,220,222 This result has
been interpreted220 in terms of the FS reconstruction
caused by a structural transition.223 In κ-(BEDT-
TTF)2Cu[N(CN)2]Cl both Fâ and FR have been found
under pressures above 3 kbar,224,225 which also indi-
cates the presence of a sizable interband gap. No
combination frequencies corresponding to the QI
effect have been reported so far.

While the FS of the κ-type salts can be represented
by the simple linear chain MB network, more com-
plicated geometries can be found in other organic
conductors. An illustrative example is the salts with
polymeric halomercurate anions: (BEDT-TTF)8Hg4-
Cl12(C6H5X)2 with X ) Cl, Br.204,205,214,226 The FS of
these compounds shown in Figure 20 originates from
hybridization of two pairs of q1D sheets open in
directions (0,1) and (1,1) in the conducting plane.227

As a result, it contains a holelike cylinder and an
electronlike cylinder having equal cross-sectional
areas. The gaps E1 and E2 between the cylinders are
small enough to allow strong MB effects in fields
above 10 T. Now, by contrast to the linear chain of
coupled orbits as in Figure 19, we obtain a sophisti-
cated two-dimensional network giving rise to a vast
variety of different frequencies in the SdH and dHvA
spectra.204,214

Pe′e ) ∑
i,j

γiγj* ) γ1
2 + γ2

2 + γ1γ2* + γ2γ1* (78)

γ1γ2* + γ2γ1* ∝ cos(æâ - æR) ) cos(2π
Fâ - FR

B )
(79)

(∂æλ1

∂ε
)

pB

- (∂æλ2

∂ε
)

pB

)
2πme

peB
(µλ1

- µλ2
) (80)
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Figure 21 shows an example of SdH and dHvA
oscillations measured on the X ) Br salt204 at T )
1.8 K along with the corresponding Fourier spectra.
While the main contribution comes from the classical
orbits a around the single holelike and electronlike
parts of the FS, several combination frequencies
labeled as na + δ are clearly pronounced. There is
also a marginally resolved peak δ in the spectrum of
the SdH oscillations which, however, is only very
weakly temperature-dependent, so that it becomes

dominating at higher temperatures, T g 6 K.204,205

In addition, frequency Fb, corresponding to the whole
Brillouin zone area, and its numerous combinations
with Fa and Fδ are observed in magnetoresistance in
fields above 20 T.214 According to the FS topology,
there are various, rather complicated, orbits to which
the observed frequencies can be assigned. For ex-
ample, the shaded and hatched areas in Figure 20
would correspond, respectively, to the closed (Landau
quantized) MB orbit and QI pattern, both yielding
the frequency equal to Fb. The actual origin of Fb has
been established via the temperature dependence of
its amplitude. By fitting it to the LK temperature
damping factor, the effective cyclotron mass of e0.4ma
has been obtained (ma is the mass corresponding to
the fundamental oscillations). This is an order of
magnitude lower than expected for the closed MB
orbit but perfectly agrees with the zero mass value
expected for the QI loop. On the other hand, the
effective cyclotron masses corresponding to the low
frequency Fδ and some other combination frequencies
have been found204,205,214 to be significantly lower than
those calculated for any relevant closed MB orbits
or QI paths. This suggests that the standard theory
of magnetic quantum oscillations is not thoroughly
valid for this material. One of the possible reasons
for that is the extremely high anisotropy of the
electronic system.

3.2. Violations of the Three-Dimensionality

The presented above formulas for the dHvA and
SdH effects are generally valid when the FS is
intersected by many Landau tubes, as shown in the
left part of Figure 22. This obviously requires that
(i) the spacing between the adjacent Landau sub-
bands is much smaller than the Fermi energy,
pωc , εF, and (ii) the energy dispersion in the direc-
tion parallel to B is sufficiently large. Under these
conditions, the oscillations are relatively small, being
contributed by only a small fraction of charge carriers
situated in the vicinity of the extremal cross section
of the FS. The first assumption is usually valid for
organic metals: the Fermi energy is typically of the
order of 0.1 eV1 whereas the cyclotron energy pωc

Figure 20. FS of (BEDT-TTF)8Hg4Cl12(C6H5X)2 with X )
Cl and Br according to the band structure calculations.227

Bold labels “a” denote the equal areas of the small
semiclassical closed orbits on the q2D holelike and (elon-
gated) electronlike FS pockets; the labels “∆” and “δ”
denote, respectively, the big and the small areas between
the FS pockets; E1 and E2 are the MB gaps separating the
FS pockets in p-space. Shaded and hatched areas depict
examples of a closed and of a QI orbit, respectively, which
would yield the oscillation frequency corresponding to 100%
of the Brillouin zone area. (Reproduced with permission
from ref 214. Copyright 2002 American Physical Society.)

Figure 21. (a) Oscillatory part of the magnetoresistance
(gray curve, right scale) and magnetization (black curve,
left scale) of (BEDT-TTF)8Hg4Cl12(C6H5Br)2 at T ) 1.8 K.
(b) Corresponding Fourier spectra. (Reproduced with per-
mission from ref 204. Copyright 2003 Springer.)

Figure 22. Schematic representation of the Landau tubes
(thin lines) crossing a 3D isotropic FS and a q2D FS (thick
dotted lines). The 3D FS is crossed by many Landau tubes.
By contrast, only few Landau tubes cross the q2D FS at a
given field. The number of tubes crossing the FS in the
latter case depends on the FS warping and on the strength
of the magnetic field.
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does not exceed 2-3 meV even in pulsed magnetic
fields up to 50-60 T. However, condition (ii) is often
broken in these highly anisotropic materials.

The right panel of Figure 22 shows schematically
a warped Fermi cylinder determined by the q2D
dispersion (eq 13) and Landau tubes in the magnetic
field parallel to the cylinder axis (i.e. normal to the
highly conducting layers). The number of tubes
intersecting the FS can be estimated from the ratio
of the interlayer bandwidth W⊥ to the distance pωc
between the Landau subbands (eq 51), W⊥/pωc =
∆F/B (see eqs 57-59). For â-(BEDT-TTF)2IBr2 this
ratio is less than 4 in the field of 15 T, so at most
four Landau tubes at a time can intersect the FS at
this field. As a result, oscillations of the electronic
energy are enhanced and one may expect deviations
from the standard 3D theory. Indeed, magnetoresis-
tance measurements performed on the âH-(BEDT-
TTF)2I3 salt, which is very similar to â-(BEDT-
TTF)2IBr2 in its anisotropic electronic structure (see
section 2.2.2), have revealed SdH oscillations with the
amplitude exceeding the background resistance by
an order of magnitude.65 So strong an amplitude and
high harmonic content cannot be described within the
3D model.

Even a stronger SdH effect has been observed47,228

on R-(BEDT-TTF)2TlHg(SeCN)4: the amplitude of the
oscillations shown in Figure 23 for T ) 1.1 K amounts
to ∼100 times the background at the field of 50 T.
Using eqs 63 and 64 for the cyclotron mass determi-
nation leads to a surprisingly field-dependent re-
sult: µ ≈ 1.8, 2.7, and 4.2 at fields about 10, 30, and
45 T, respectively. A similar field-dependent mass
was reported for the isostructural compound R-(BEDT-
TTF)2NH4Hg(SCN)4.229 As shown in Figure 24, the
cyclotron mass evaluated according to the LK for-
mula (eq 64) increases approximately linearly with
the field, with the slope of =0.1 T-1. The inset in
Figure 24 displays the experimentally measured229

ratio between the amplitudes of the second and first
harmonics of the SdH oscillations in the same com-
pound. For comparison, the prediction of the LK
theory is shown in the same figure by the solid
continuous line. The discrepancy between the theory
and experiment rapidly grows with increasing the

field, reaching an order of magnitude at B g 30 T.
Highly anomalous behavior has also been observed
for magnetoresistance oscillations in κ-(BEDT-TTF)2-
I3.166,168-170 Besides the high harmonic content and
field-dependent effective cyclotron mass, it was found
that the total oscillation amplitude decreased instead
of growing, as the sample was cooled below 1 K in
high magnetic fields directed exactly perpendicular
to the layers.

It should be noted that no signs of beating of the
oscillations have been found in the latter three
compounds in the field range between 5 and 50 T.
This sets the upper limit of the ratio W⊥/pωc e 0.5 at
the field of 10 T. Therefore, already at this moderate
field the FS can be crossed by not more than one
Landau tube at a time, which clearly contradicts the
basic assumption of the standard 3D model.

The dHvA oscillations have also been found to
violate the 3D theory. Strong oscillations of magne-
tization with anomalously high harmonic content
have been observed, for example, in θ-(BEDT-
TTF)2I3,230 κ-(BEDT-TTF)2I3,166 the high-field state of
R-(BEDT-TTF)2KHg(SCN)4,230,231 and â′′-(BEDT-TTF)2-
SF5CH2CF2SO3.232 The effective cyclotron mass esti-
mated according to the LK expression (eq 64) from
the temperature dependence of the amplitude of
the second harmonic of the dHvA signal has been
found to be significantly smaller than that obtained
from the analysis of the fundamental harmonic in
R-(BEDT-TTF)2KHg(SCN)4

231 and in κ-(BEDT-TTF)2-
Cu(NCS)2.203 As mentioned in section 3.1.4, the dHvA
spectrum in the latter compound reveals “forbidden”
frequencies which cannot be explained by the stan-
dard MB theories.

3.3. Two-Dimensional Models of the DHvA Effect

3.3.1. Lifshitz−Kosevich−Shoenberg Formula
Obviously, an appropriate description of the mag-

netic quantum oscillations in the materials men-
tioned above must involve their highly 2D character.

Figure 23. Giant SdH oscillations in a high-quality
sample of R-(BEDT-TTF)2TlHg(SeCN)2 in pulsed magnetic
fields perpendicular to the layers, at T ) 1.1 K. (Repro-
duced with permission from ref 47. Copyright 1996 EDP
Sciences.)

Figure 24. Illustration of the violation of the 3D LK model
in R-(BEDT-TTF)2NH4Hg(SCN)2. Main panel: field-de-
pendent values of the effective cyclotron mass parameter
obtained by the LK fitting to the temperature dependence
of the SdH amplitude. Inset: comparison of the experi-
mentally determined field-dependent ratio between the
first and second harmonic amplitudes of the SdH signal
with that predicted by the LK model. (Reproduced with
permission from ref 229. Copyright 1996 Elsevier Science-
Direct.)
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In particular, one should take into account an in-
crease of the number of electrons contributing to the
oscillations. In the limiting, perfectly 2D case the
interlayer bandwidth W⊥ is zero, Landau subbands
are degenerate into sharp levels, and all electrons on
the FS provide in-phase contributions. A modification
of the LK formula for the ideally 2D case with a
constant, that is, field-independent chemical poten-
tial, ú ) εF, was proposed by Shoenberg233 and
confirmed later by a more rigorous theoretical analy-
sis.234,235 The Lifshitz-Kosevich-Shoenberg (LKS)
formula (also known in the literature as the 2D LK
formula) represents the magnetization oscillations in
the harmonic expansion form similar to eq 54:

where F is defined by eq 55 with Sextr being simply
the area of the FS cross section S, which is constant
in the 2D case, and the harmonic amplitudes are

with the damping factors defined by eqs 64, 67, and
69. Here B is supposed to be applied perpendicular
to the 2D plane. Since the cyclotron orbits in two
dimensions are determined solely by the perpendicu-
lar field component B⊥, the generalization for an
arbitrary field direction is obvious: one should simply
substitute B⊥ ) B cos θ for B in the argument of sine
in eq 81, as well as in the damping factors RT and
RD, and add the factor 1/cos θ to the argument of the
cosine in the spin-splitting factor RS (eq 69) (θ is, as
before, the tilt angle with respect to the normal to
the 2D plane).

Comparing expressions 56 and 82 for the dHvA
amplitude, we notice the following three points:

(i) The 2D amplitude is enhanced in comparison
to the 3D one by a factor of the order of (εF/pωc)1/2.
For our materials this gives roughly an order of
magnitude in fields of ∼10 T.

(ii) The harmonic ratio is enhanced by the factor
r1/2. This is the main reason for the “anomalously”
high harmonic contents obtained in the magnetiza-
tion experiments mentioned above.166,230,232 When the
damping factors are close to unity, that is, in a very
clean material and at low enough temperatures,
dHvA oscillations take the so-called inverse-sawtooth
form: at increasing field the magnetization steeply
increases as a Landau level crosses the Fermi energy
and then decreases approximately linearly until the
next Landau level comes close to εF. This behavior is
schematically shown in Figure 25.

(iii) The field dependence of Mr is slightly different
in the 2D case due to the absence of the factor B1/2 in
eq 82. This should be taken into account in the
determination of the Dingle temperature TD. On the
other hand, the temperature dependence is com-

pletely determined by the same factor RT as in the
3D case. Therefore, the LKS formula is equivalent
to the 3D LK formula with respect to the cyclotron
mass analysis.

While the LKS formula successfully describes
dHvA oscillations in some cases, as will be shown
below, there are several strong restrictions as to its
general applicability. First of all, it assumes the
chemical potential ú to be independent of field. This
assumption may turn inappropriate in highly 2D
materials. Indeed, considering, for simplicity, the case
T ) 0, the requirement of the constant chemical
potential, ú ) εF, implies that the lowest unoccupied
state remains always at εF, independent of B. When
the Landau levels are sharp (p/τ , pωc), this condi-
tion can be fulfilled only if there are additional, field-
independent states (e.g. impurity states or another
conduction band with a sufficiently high density of
states) or the total carrier concentration is allowed
to change (high magnetostriction). Otherwise, the
chemical potential must be, at least partially, pinned
to the nearest Landau level and hence oscillate with
changing B. This problem has been extensively
studied in recent years, and the results will be
reviewed below.

The next problem of the 2D LKS model is that it
completely neglects dispersion in the third direction,
which is always present in real bulk materials. In
section 3.3.5 it will be shown how to take into account
a finite interlayer charge transfer.

Finally, the LKS formula suggests that scattering
processes are described by the 3D Dingle factor,
which is not obvious in an extremely 2D case, as will
be briefly discussed in section 3.3.6.

3.3.2. Role of Chemical Potential Oscillations

To illustrate the role of the chemical potential
oscillations in the dHvA effect, we consider first an
ideal 2D metal with a constant concentration of
charge carriers, N ) constant, and a parabolic in-
plane dispersion. The xy plane is conventionally
associated with the 2D plane, and the field is applied
in the perpendicular direction: B ) (0, 0, B).

M̃ ) -∑
r)1

∞ 1

r
Mr sin[2πr(FB -

1

2)] )

∑
r)1

∞ (-1)r+1

r
Mr sin(2πr

F

B) (81)

Mr ) e
2πp

S
π2mcd

RT(r) RD(r) RS(r) (82)

Figure 25. Dependence of the oscillating magnetization
of an ideal 2D metal on inverse magnetic field predicted
by the Lifshitz-Kosevich-Shoenberg formula (eq 81) for
zero temperature, in the absence of scattering. The model
implies the constant chemical potential, ú ) εF. The
oscillations have the inverse sawtooth shape: M̃ linearly
decreases at increasing field and discontinuously jumps up
every time when a Landau level coincides with the 2D FS,
i.e., when the ratio F/B ) εF/pωc is an odd half-integer
number.
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For a qualitative consideration, we make further
simplifications, assuming zero temperature and scat-
tering rate and neglecting the electron spin. Let us
start with the field B*nF at which the Landau levels
with n ) 0, 1, 2, ..., nF are completely filled and the
level with n ) nF + 1 is empty. This corresponds to
the condition

The chemical potential coincides with the Fermi
energy, ú ) εF, situating exactly in the middle of the
gap between levels nF and (nF + 1). Taking into
account that the carrier concentration is

where d is the unit cell period in the z direction, and
the condition in eq 83, we obtain the number of the
carriers (per unit volume) on each degenerate Landau
level up to n ) nF:

With increasing the field, the Landau levels shift up
in the energy scale and their degeneracy (eq 85)
grows, so that free states appear on level nF. There-
fore, the chemical potential jumps down to this level
and stays pinned to it, rising linearly with B until
the level becomes completely empty, at the field
BnF-1

/ , such that nFpωc ) εF. At this point ú jumps to
level (nF - 1) and so on. Thus, the chemical potential
ú exhibits sawtooth oscillations around εF, with the
amplitude equal to half the distance between the
Landau levels, pωc/2, as shown in Figure 26a.

Now, to obtain the magnetization oscillations, one
has to express the total electron energy as a function
of magnetic field and take the derivative with respect
to B. The energy E in the unit volume is

The second term on the left-hand side of eq 86 reflects
the fact that the nF-th level is, generally speaking,
only partially filled. Equation 86 can be rewritten in
the form

Since both ν and ωc are linear functions of B, the
energy depends quadratically on the field when nF
is fixed. This dependence holds in the field interval
at which εF/(nF + 1) < pωc < εF/nF, where the filling
of level nF is changing between 0 and ν. When, with
increasing field, the energy of level nF rises above
εF + pωc/2; that is, when nFpωc > εF, this level
becomes empty, the chemical potential jumps to the
next highest level, (nF - 1), and the energy of the

system switches from EnF(B) to EnF-1(B). As a result,
the total field dependence E(B) consists of a series of
parabolas, as shown in Figure 26b. Correspondingly,
the magnetization M ) -dE/dB exhibits the sawtooth
oscillations displayed in Figure 26c: it increases
linearly with field everywhere except the points
npωc ) εF, at which exactly an integer number of
Landau levels is filled. Note that the oscillations of
magnetization M̃ reproduce the form of the chemical
potential oscillations in Figure 26a. On the other
hand, comparing them with the LKS oscillations
corresponding to the condition ú ) constant, we see
that the latter can be obtained by inverting the
present “sawtooth” and shifting it by half the period.

The described sawtoothlike behavior of the oscil-
latory magnetization in a 2D system with a constant
number of carriers has been qualitatively predicted
by Peierls236 as early as in 1933. However, he
considered the 2D case as “physically meaningless”
at that time. It was only in the 1980s, when 2D and
q2D conducting materials attracted substantial in-
terest, that the quantitative theory of the 2D dHvA
effect started to develop. It was pioneered by Vagner
and co-workers, who were the first to derive analyti-
cal expressions for oscillatory magnetization237 and
magnetic susceptibility238 of a 2D metal with a
constant carrier concentration at a finite tempera-
ture.

Unlike in the LK or LKS model, where the oscil-
lations of the chemical potential are neglected, in the
present case M̃ cannot be generally represented in a
simple harmonic form, as will be seen below. In
particular, effects of finite temperature and scatter-
ing cannot be straightforwardly separated from each
other. On the other hand, as was noted in ref 237,
the problem is considerably simplified in high fields,

(nF + 1)pωc ) εF (83)

N )
πpF

2

(2πp)2d
)

εFmc

2πp2d
(84)

ν ) N
nF + 1

) eB
2πpd

(85)

EnF
(B) ) ν ∑

n)0

nF-1

pωc(n +
1

2) + (N - nFν)pωc(nF +
1

2)
(86)

EnF
(B) ) -νpωc

nF(nF + 1)
2

+ Npωc(nF + 1
2) (87)

Figure 26. Oscillations of the chemical potential (a), free
energy (b), and magnetization (c) at a constant number of
charge carriers. The temperature and scattering rate are
assumed to be zero. M̃ reproduces the sawtooth shape of
the chemical potential oscillations: it linearly grows with
increasing field (decreasing F/B) and drops down whenever
the Fermi level is situated in the middle between adja-
cent Landau levels, i.e., at integer filling factors F/B )
εF/pωc ) 0, 1, ..., n - 1, n, n + 1, ....
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when the temperature induced smearing of the Fermi
edge, kBT, and the Landau level width, Γ ) p/(2τ),
are much smaller than the spacing pωc between the
levels. Under these conditions, the oscillatory behav-
ior is dominated by the field-dependent filling of the
two Landau levels nearest (at a given field) to εF; all
the lower levels are completely filled, and all the
higher levels are empty. With these simplifications,
Vagner et al. have obtained an explicit dependence
of magnetization on magnetic field and tempera-
ture237 and proposed a simple expression for the
envelope of the oscillations in the high-field limit:239

where Mextr are the minimum and maximum values
of the oscillating magnetization, and R ≡ pωc/kBT .
1 should be taken at integer filling factors, εF/pωc )
n, that is, at the fields at which the chemical potential
is situated in the middle between the adjacent
Landau levels. Formula 88 is valid when Γ , kBT ,
pωc or, more strictly,235 when (pωcΓ)1/2 , kBT , pωc.

Another limit, kBT , Γ, was considered by
Grigoriev.240 It was shown that if the Landau level
broadening due to scattering can be described by a
Lorentzian and is independent of B (like in the 3D
case), the magnetization at N ) constant can be
reduced to the form similar to the LKS expression
with the only but important difference being (cf. the
wave forms of the oscillations in Figures 25 and 26c)
that all the even harmonics change the sign in eq
82. Such a simple relation to the LKS formula is,
however, broken if the effect of finite temperature
cannot be neglected or the concentration of the
carriers responsible for the oscillations is allowed to
change to a certain extent with magnetic field.240

The temperature effect on the oscillation amplitude
at N ) constant is quite different from that at ú )
constant. This is already seen from the asymptotic
high-field expression (eq 88), which cannot be re-
duced to the temperature damping factor of harmonic
amplitudes (eq 64) staying in the LKS formula.
Numerical analysis241 shows that the sawtoothlike
wave form at N ) constant smoothes, with increasing
temperature, slower than in the case ú ) constant.

3.3.3. Systems with a Finite Electron Reservoir

Now let us consider the situation intermediate
between N ) constant and ú ) constant, which is
actually typical of many organic conductors. Indeed,
a simple cylindrical FS, like in â-type salts, is rather
an exception than a rule among these materials. The
FSs of the most extensively studied κ-, R-, and λ-salts
of BEDT-TTF and BETS combine holelike cylinders
with electronlike sheets open in the 2D plane. The
thermodynamic equilibrium implies that the charge
carriers can be transferred between the correspond-
ing conduction bands with changing the field, to
maintain the same chemical potential throughout the
sample. The field-independent states on the open
Fermi sheets serve as a reservoir of carriers, reducing
oscillations of ú.

Intuitively, this can be understood through the
same qualitative consideration as was made above
for the pure case of N ) constant. However, by
contrast to the latter case, we should take into
account that the position of the chemical potential is
now ultimately determined by the energy εR of the
highest occupied state in the second reservoir band.
Again, we associate the beginning of the period with
the field BnF

/ , defined by condition 83, at which level
nF is fully occupied and level (nF + 1) is empty. The
chemical potential is situated in the middle of the
gap between these levels, coinciding with the Fermi
energy: ú ) εR ) εF. As the field starts to increase,
the Landau level degeneracy ν determined by eq 85
increases. Therefore, the carriers are transferred
from the highest occupied states of the reservoir band
to level nF, whose energy εnF

2D(B) is lower than εF. As
a result, the chemical potential starts to decrease
until it reaches εnF

2D(B). Starting from that point, the
carrier exchange between level nF and the reservoir
changes to the opposite direction, so that εR increases,
remaining equal to εnF

2D(B) until the Landau level
becomes completely empty. This happens, obviously,
at a lower field than BnF-1

/ . In the rest of the period,
carriers are transferred from the reservoir to level
(nF - 1) and ú ) εR gradually decreases, reaching the
Fermi energy εF at the end of the period, B ) BnF-1

/ .
As a result, the amplitude of the chemical potential

oscillations is reduced in comparison to the case
without a reservoir. The reduction factor is obviously
determined by the ratio between the densities of
states in the relevant bands near the Fermi level:

where DR(εF) and D0
2D(εF) are respectively the densi-

ties of states of the reservoir band and of the 2D band
at zero field. [Hereinafter, it is assumed that DR(ε)
does not change in the small interval εF ( pωc/2 and
equals DR(εF).] For example, in the limiting case,
nR . 1, the carriers can be transferred to and from
the reservoir without a significant change of εR, so
that the oscillations of the chemical potential become
negligible.

Turning now to the oscillating behavior of magne-
tization, of course it must be influenced by the
behavior of the chemical potential and, therefore, by
the presence of a reservoir. This was for the first time
noted by Vagner et al.,242 who considered theoreti-
cally the effect of reservoir states on the dHvA
oscillations in layered AsF6-intercalated graphite. A
detailed numerical study of the chemical potential
and magnetization oscillations in a system with a
field-independent reservoir has been performed by
Harrison et al.165 Figure 27 illustrates the influence
of the reservoir strength nR on the wave form and
amplitude of the oscillating chemical potential
ú̃(B)) ú(B) - εF and magnetization M̃(B) at T,
1/τ ) 0. The fraction γ of the period over which
ú̃ increases, following the highest occupied Landau

nR )
DR(εF)

D0
2D(εF)

(89)

Mextr = (
eεF

2πpd(1 - 1
R

ln(2R) - 1
R) (88)
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level, decreases as the strength of the reservoir, nR,
increases:165

The wave form of the magnetization oscillations
repeats that of ú̃; at the same time their amplitude
remains independent of nR. This suggests an empiri-
cal relationship:165

Effects of finite temperature and scattering have also
been studied in ref 165, demonstrating substantial
deviations from the LK model. On the other hand,
the relationship (eq 91) between M̃ and ú̃ has been
found to hold at any reasonable T and τ. Later it was
confirmed on the basis of a more rigorous analysis;
see, for example, refs 240 and 241.

The dependence of the wave form of the dHvA
oscillations on the reservoir states means that the
latter affect the relative amplitudes of the oscillation
harmonics. As was already mentioned, at zero tem-
perature all the even harmonics change the sign at
nR ) 0 in comparison to the LKS case, nR ) ∞. In the
intermediate case, nR ) 1, the even harmonics are
absent at T ) 0 and, since the total dHvA amplitude
remains constant, the odd harmonics exceed the LKS
values: for example, the first harmonic is ∼30%
higher than its LKS value.243 The harmonic content
is significantly modified by temperature: numerical
calculations243 show that the second harmonic de-

pends nonmonotonically on T at nR > 0.5 and may
even change sign as T is varied.

The most general description of the dHvA effect in
a 2D metal with a field-independent reservoir of
carriers has been proposed by Grigoriev240 and
Champel and Mineev.234,244 It was shown that the
magnetization can be generally expressed in the form

with the harmonic amplitudes Mr determined by eq
82. In comparison with the LKS formula (eq 81), the
present expression includes the oscillations of the
chemical potential, ú̃, in the argument of the sine.
Although the term ú̃/(pωc) e 1/2 is normally much
smaller than the ratio F/B, which determines the
oscillation frequency, it may significantly change the
phase within a given oscillation period.

The explicit equation for ú̃ reads240,244

At low temperatures and high fields, the damping
factors RT and RD are close to unity and, if the
reservoir strength nR is not too high, the oscillations
ú̃ drastically affect the wave form and, hence, the
harmonic content of the oscillating magnetization.

In general, the transcendental equation (eq 93)
cannot be solved analytically. However, if the number
of significant harmonics in the experimentally mea-
sured dHvA signal is not very big, eqs 92, 93, and 82
can be used for fitting the data and extracting the
electronic parameters.

An alternative method of analyzing experimental
data has been proposed by Harrison et al.165 These
authors notice that the oscillating Helmholtz free
energy H takes its extremum (minimum and maxi-
mum) values when the chemical potential is equal
to εF. This happens always at the fields corresponding
to integer (npωc ) εF; H is minimum) and odd half-
integer [(n + 1/2)pωc ) εF; H is maximum] fillings of
Landau levels, irrespectively of the presence of a
reservoir. Therefore, it is suggested that the peak-
to-peak amplitude Hp-p is independent of the reser-
voir states and can be calculated at any value of nR.
Then, the easiest way is to use the LKS model
assuming ú̃ ) 0, that is, nR ) ∞. In this model Hp-p
is given by22,233

where Mr are the LKS harmonic amplitudes, a )
eS/(π2pmcd), and the summation is performed over

Figure 27. Oscillations of the chemical potential (a) and
of the magnetization (b) calculated for different values of
the reservoir strength: nR ) 0, 1/3, 1, 3, and 10. The
temperature and scattering rate are assumed to be zero.
The parameter γ, see eq 90, corresponds to the part of the
oscillation period during which the chemical potential ú is
pinned to a Landau level. With increasing nR the oscilla-
tions of ú diminish. The magnetization oscillations repeat
the shape of the chemical potential oscillations, retaining,
however, the amplitude independent of nR. (Reproduced
with permission from ref 165. Copyright 1996 American
Physical Society.)

γ ) 1
1 + nR

(90)

M̃ ) N
B

(1 + nR)ú̃ (91)

M̃ ) ∑
r)1

∞ (-1)r+1

r
Mr sin[2πr(FB +
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∑
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all significant odd-harmonic amplitudes. The second
equality in eq 94 can be used for fitting to the
experimental data. For example, if only the first three
harmonics are significant, one obtains165

where expressions 64 and 67 are substituted for RT
and RD, respectively, and the spin-splitting effect is
neglected. This formula can be iteratively fitted to
the experimentally measured field- and temperature-
dependent amplitudes M1 and M3, and the electronic
parameters µ and TD can be extracted. After that,
the parameter γ (eq 90) can be adjusted so as to place
the minima and maxima of the magnetization at the
same positions as those in the experimental data
(recall that γ determines the fraction of the dHvA
period at which the magnetization rises with the
field; see Figure 27).

3.3.4. Systems with Multiple Quantized Bands
Another interesting case to consider is a multiband

system in which more than one band is subject to
the Landau quantization. Originally, the interest in
such systems was triggered by the observation of the
difference frequency, Fâ - FR, in the dHvA signal
from κ-(BEDT-TTF)2Cu(NCS)2

203 which is not allowed
within the standard MB (magnetic breakdown) theory
(see section 3.1.4). Later, similar “forbidden” frequen-
cies were found in R-(BEDT-TTF)2KHg(SCN)4

202 and
in other inorganic materials: an InGaAs quantum-
well system245 and Sr2RuO4.246 In the organic metals,
the effect has been observed, so far, only in the MB
regime, that is, when the existence of two fundamen-
tal frequencies, FR and Fâ, is caused by the small
semiclassical orbit R and big MB orbit â. Therefore,
it was initially supposed247,248 that the MB is a
necessary condition for the manifestation of the
“forbidden” frequencies. However, subsequent exten-
sive theoretical studies212,249-259 have shown that the
effect can be explained purely by the chemical
potential oscillations, without invoking the MB and
can be realized as well in systems containing several
independent (i.e. not connected through the MB) 2D
bands.249-251,254,-259 While the exact theoretical de-
scription of the combination frequencies is still a
matter of debate (see, e.g., refs 259-261), their
physical origin can be understood based on the
discussion above. Indeed, in the case when more than
one 2D band contribute to the dHvA effect, the
equations for the oscillatory magnetization (eq 92)
and chemical potential (eq 93) should be generalized
to sum up the corresponding contributions.256-258

Then, the presence of more than one fundamental
frequency in the oscillating chemical potential should
lead to frequency mixing effects in the resulting
magnetization. In particular, the “forbidden” differ-
ence frequencies such as Fâ - FR, Fâ - 2FR, and so
forth are expected to emerge in the oscillation spec-
trum. On a qualitative level, such frequencies are a
result of a communication between two Landau-

quantized 2D bands via the chemical potential: if,
for example, the chemical potential is pinned to a
Landau level of the R-band and moves up with the
latter (at increasing field), the frequency Fâ′ with
which it is crossed by the Landau levels of the â-band
is shifted by an amount close to the R-frequency, that
is, Fâ′ = Fâ - FR.

3.3.5. Influence of the Interlayer Coupling

Up to now we considered dHvA oscillations in the
ideally 2D case, that is, completely neglected the
coupling between the conducting layers. The latter
is, however, always present in real bulk materials.
A finite interlayer dispersion turns sharp (in the
absence of scattering) Landau levels into subbands
with the width given by the interlayer bandwidth W⊥.
This obviously leads to a reduction of the chemical
potential oscillations and to a modification of the
wave form of the dHvA oscillations.

The influence of the finite W⊥ on the 2D dHvA
effect has been theoretically studied by Grigoriev and
Vagner.262,263 In particular, an analytical expression
for the envelope of the magnetization oscillations
valid in a wide range, 0 < W⊥ < pωc, was derived.

Assuming the interlayer coupling is described by
the usual dispersion relation ε(pz) ) -2t⊥ cos(pzd/p),
one can incorporate it into the general expressions
for M̃ (eq 92) and ú̃ (eq 93) by multiplying each
harmonic term by the factor240,244,255,264,265

where J0 is the 0-th order Bessel function. In the limit
2t⊥ , pωc, the Bessel function is close to unity and
one returns back to the purely 2D case. On the other
hand, when 2t⊥ > pωc, one can use the large argu-
ment approximation (eq 15) for the Bessel function,
arriving at the conventional 3D result with the
oscillation amplitude periodically modulated accord-
ing to eq 57.

As was shown in section 3.1.1, the modulation, that
is, the beating behavior of the oscillations, depends
in a nonmonotonic manner on the tilt angle of the
magnetic field. The beat frequency vanishes at angles
(eq 21) in line with the AMRO phenomenon (see
section 2.2.1). One should therefore expect an en-
hancement of the 2D character of the quantum
oscillations at these angles. For example, numerical
simulations performed by Nakano264 for the case of
two q2D Landau-quantized bands yield a strong
enhancement of the amplitude of the “forbidden”
frequencies due to the chemical potential oscillations
at the field directions satisfying condition 21 for both
bands. This effect has indeed been observed by
Ohmichi et al.266 on the q2D compound Sr2RuO4. It
would be very interesting to look for similar or other
manifestations of the enhancement of two-dimen-
sionality with changing the field orientation in
organic conductors displaying the AMRO effect.
Probably it is this mechanism that caused the
considerable increase of the harmonic content of the
dHvA signal from â-(BEDT-TTF)2X with X ) IBr2

M1 +
M3

3
∝ KµT/B

sinh(KµT/B)
exp(-KµTD/B) +

1
9

3KµT/B
sinh(3KµT/B)

exp(-3KµTD/B) (95)

RW ) J0(2πr
2t⊥

pωc
) (96)
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and I3 at certain field orientations observed by
Wosnitza et al.70

3.3.6. Comment on the Dingle Factor
In the models presented above, the finite scattering

is taken into account by introducing the Dingle factor
(eq 67). This is correct in the case when the Landau
level broadening caused by the scattering is inde-
pendent of magnetic field and has the Lorentzian
shape. While it is generally true for conventional 3D
metals,22,164 it is still not clear whether the same rule
holds as well for 2D systems (see, e.g., ref 267 and
references therein for a discussion). This question is
quite important, since not only the field but also the
temperature dependence of the 2D dHvA signal is
sensitive to the exact shape of the Landau levels.235

The situation may become even more complicated
in the intermediate, q2D case. As pointed out by
Maniv and Vagner,268 the effect of impurity scattering
should depend on the interlayer tunneling probability
or, in other words, on the interlayer transfer integral
t⊥. The physical reason for that is the following:268 A
strictly 2D electron moving, in a strong magnetic
field, along a planar cyclotron orbit can pass several
times in the vicinity of one and the same impurity,
with the number of times increasing with ωcτ. The
scattering rate for such an electron is therefore
enhanced by the magnetic field.269 However, in a
quasi-2D material, the electron can avoid the impu-
rity by tunneling to another layer. This leads to a
modification of the scattering rate and, hence, of the
Landau level broadening, depending on the interplay
between three characteristic energies: pωc, p/τ, and
t⊥. A further complication comes from the fact that
not only pointlike impurities but also long-range
imperfections are important in the 2D case. In
particular, they strongly contribute to damping of the
oscillations in organic metals.67

Usually the shape of the Landau levels is studied
by comparing experimental data with theoretical
models assuming various shapes and choosing the
one which provides a better fit (see, e.g., ref 267). A
direct way of determination of the density-of-states
distribution, including the shape of the Landau
levels, from the form of a single dHvA oscillation has
been recently proposed by Grigoriev.235,263 This in-
formation would be very important not only for
describing the quantum oscillations but also for a
general understanding of different scattering mech-
anisms in q2D organic conductors. One should,
however, note that the proposed method requires
extremely accurate measurements of the oscillation
wave form.

3.4. Models versus Experiment
From what was presented above, it is clear that

the behavior of the dHvA oscillations becomes es-
sentially 2D when the Landau level spacing pωc is
larger than the interlayer bandwidth W⊥.

At high temperatures, when the temperature-
induced smearing of the Fermi edge, kBT, exceeds the
value pωc, one can universally use the LKS formula
(eq 81). As a matter of fact, only the fundamental
harmonic is significant in the dHvA effect at kBT/

(pωc) > ∼0.2, even for extremely 2D materials (see,
e.g., refs 241 and 243). In this case the temperature
dependence of the oscillation amplitude is expected
to be identical to that of the 3D LK model while the
field dependence is slightly modified. At lower tem-
peratures the higher harmonics start to significantly
contribute to the dHvA effect. The 2D character may
then be manifested by a nontrivial wave form of the
oscillations and substantial deviations from the LK
field and temperature dependence. Typically, the
Landau level separation in organic conductors is
pωc < ∼1 meV in accessible steady magnetic fields.
Therefore, the 2D features become particularly im-
portant at temperatures below 1.0-1.5 K. Addition-
ally, the broadening of the Landau levels due to
scattering, ∼p/τ, should of course be smaller than pωc.
This sets the necessary requirement to the sample
quality.

In this section we will consider three examples of
the organic compounds in which the above conditions
can obviously be satisfied, leading to different mani-
festations of the 2D nature of the dHvA effect.

3.4.1. â′′-(BEDT-TTF)2SF5CH2CF2SO3

This compound is a prominent example of a highly
2D electronic system in a bulk material. Despite
the fact that the packing of the BEDT-TTF molecules
in the conducting layers is quite different from that
in the κ-type salts, the FS topology predicted by
extended-Hückel band structure calculations270,271 is
similar: it contains holelike cylinders and electron-
like open sheets. The cylindrical part of the FS is
manifested under magnetic fields by pronounced
AMROs150,272 and magnetic quantum oscilla-
tions.167,232,271-274 As mentioned in section 2.4, the
extremely high electronic anisotropy is already re-
flected in the behavior of the semiclassical magne-
toresistance as a function of the field orientation. The
quantum oscillations also display features charac-
teristic of a highly 2D system.

Figure 28 shows an example of the oscillatory
magnetization232 recorded at T ) 0.44 K in the field
nearly perpendicular to the layers. The oscillation
frequency, F ) (198 ( 1) T, reveals the FS cross

Figure 28. dHvA effect in â′′-(BEDT-TTF)2SF5CH2CF2-
SO3 measured experimentally (circles) along with that
obtained within the LKS formula (solid line), using the
damping factors determined from low-field, high-temper-
ature measurements. (Reproduced with permission from
ref 232. Copyright 2000 American Physical Society.)
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section equal to 5% of the Brillouin zone area. This
value is a factor of 3 smaller than predicted by the
refined band structure calculations271 but perfectly
agrees with the results of the AMRO experiment.272

The oscillations in Figure 28 have a clear inverse-
sawtooth wave form typical of a q2D metal with a
constant chemical potential. Indeed, the solid curve,
representing the 2D LKS formula (eq 81), is virtually
indistinguishable from the experimental data. The
values of the cyclotron mass µ ) 1.9, spin-splitting
factor gµ ) 3.9, and Dingle temperature TD ) 0.4 K
used for calculating the LKS curve have been taken
from measurements232,271 performed at higher tem-
peratures and lower fields, at which the dHvA signal
is perfectly harmonic. Thus, the wave form of the
magnetization oscillations appears to be fully con-
sistent with that expected from a 2D metal with
negligibly small oscillations of the chemical potential.

The reason for such a perfect stabilization of the
chemical potential ú in this highly 2D material is not
quite clear at present. Of course, ú may be pinned,
to a certain extent, by the q1D electron reservoir
associated with the open sheets of the FS that are
predicted by the band structure calculations270,271

(although no direct experimental evidences for the
existence of such sheets have been reported as yet).
The possible influence of the field-independent elec-
tron reservoir in this compound has been studied232

in the framework of the numerical model proposed
by Harrison et al.165 (see section 3.3.3). The simula-
tions have shown that the density of states of the
reservoir band must be at least 5 times higher than
that of the 2D band in order to account for the
observed wave form. It is not clear whether one can
expect such a high density of states on the open
Fermi sheets. Besides, it was noted275 that the
numerical model165 reproduces the experimental data
less accurately than the LKS formula.

An incommensurate charge- or spin-density wave
associated with the nesting of the open Fermi sheets
was proposed by Nam et al.274 as a possible reason
for the stabilization of the chemical potential. A
density wave was indeed predicted to play a stabiliz-
ing role for the chemical potential in a system
combining a nested q1D and Landau-quantized q2D
bands.276 However, even though an incommensurate
density wave can be more efficient than a com-
mensurate one,274 it must still have an infinitely high
density of states in order to completely suppress
oscillations of ú. Furthermore, no clear evidence of a
density wave has been found in the present com-
pound thus far.

An alternative mechanism for stabilizing the chemi-
cal potential may be, in principle, the magnetostric-
tion effect as noted by Champel and Mineev.277

Indeed, if the low-temperature compressibility is
dominated by the conduction electrons, the sample
volume and, hence, the carrier concentration can
change in a magnetic field so as to cancel the
oscillations of the chemical potential.278

Another unsolved question concerning the dHvA
effect in â′′-(BEDT-TTF)2SF5CH2CF2SO3 is the tem-
perature dependence of the oscillation amplitude. As
follows from the LKS model, this dependence must

be described by the conventional LK temperature
damping factor RT (eq 64). However, the LK fit to the
experimental data obtained at low temperature, T )
0.4 K, yields a field-dependent cyclotron mass
value:232 at B < 12 T the mass is equal to 1.9me,
agreeing with the higher temperature result, whereas
a lower value of 1.6me is found to better fit the high-
field (around B ) 20 T) data. Moreover, the temper-
ature dependence of the second and third harmonic
amplitudes gives µ ) 1.4 and 1.0, respectively,172 that
is, considerably lower than what is determined from
the fundamental harmonic. Such an apparently field-
and harmonic-dependent cyclotron mass could be
explained by the models involving an oscillating
chemical potential. However, this would contradict
the above conclusion, that ú ) constant, based on the
wave form of the dHvA signal. Thus, further studies
are necessary for developing a consistent quantitative
description of the dHvA in this compound.

3.4.2. R-(BEDT-TTF)2KHg(SCN)4

This compound is a member of the isostructural
family R-(BEDT-TTF)2MHg(XCN)4, where M ) K, Tl,
Rb, or NH4 and X ) S, Se. An example of the FS
typical of these salts, combining the q2D cylinder and
a pair of open q1D sheets, is shown in Figure 1d.
Three of these compounds, with M ) K, Tl, and Rb
and with X ) S, have been of particular interest over
the past decade due to their highly unusual behavior
under magnetic fields. Numerous anomalies dis-
played by these compounds are presently associated
with the nesting instability of the q1D band resulting
in a charge-density wave (CDW), characterized by a
very low energy gap, and its interaction with the
coexisting metallic q2D band. The basic properties
of R-(BEDT-TTF)2MHg(XCN)4 are reviewed in refs
25, 26, and 47; for recent progress, see refs 279-281
and references therein. Here we will restrict our-
selves to the high-field, low-temperature dHvA effect,
illustrating the role of the two-dimensionality.

The high-field regime is defined by the so-called
kink field Bk (Bk = 24 T in our compound) at which
the zero-field state CDW0 is transformed into the
CDWx state with a field-dependent wave vector (see,
e.g., ref 280). The energy gap is strongly reduced in
the CDWx state in comparison to that in the CDW0,
so that the cyclotron orbits on the cylindrical part of
the FS are considered to be the same as in the normal
metallic state.

The lower curve in Figure 29 taken from ref 165
represents the low-temperature magnetization in
R-(BEDT-TTF)2KHg(SCN)4 obtained in the pulsed-
field experiment.231 The oscillation frequency, FR ≈
670 T, corresponds to the cyclotron orbit on the
cylindrical part of the FS, in agreement with the band
structure predictions. The rapid damping of the dHvA
signal at fields below =24 T is associated with the
kink transition. The strong oscillations observed in
the high-field state are characterized by only a
weakly asymmetric wave form. Nevertheless, the
Fourier analysis231 reveals a high harmonic content
inconsistent with the 3D LK model. Moreover, the
cyclotron mass estimated from the temperature
dependence of the amplitude of the second harmonic
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using eq 64 is almost two times lower than that
obtained from the fundamental harmonic, thus in-
dicating a strong violation of the conventional LK
behavior. On the other hand, the wave form and the
field dependence of the oscillation amplitude can be
fairly well reproduced by the numerical model165

using the parameters µ ) 2.6, τ ) 5 ps (i.e. TD ) 0.24
K), and nR ) 0.4 ( 0.2. The calculated curve is shown
in the upper part of Figure 29.

The presented data imply an appreciable effect of
reservoir states attenuating oscillations of the chemi-
cal potential. At first sight, the role of the reservoir
could be taken by the q1D band predicted by the band
structure calculations. However, the q1D band should
be at least partially closed by the CDW gap even in
the high-field state. Alternatively, as mentioned in
section 3.4.1, the chemical potential can be stabilized
by the CDW itself. In the limit of a completely
depinned incommensurate CDW, the latter would act
in the same way as the normal metallic band.279 In
fact, there is a rather delicate interplay between the
high-field CDWx state and the Landau quantization
effect on the metallic q2D band reflected, for example,
in a hysteretic behavior of the magnetization and
anomalous features in oscillating magnetoresis-
tance.279 Nevertheless, the amplitude and the wave
form of the dHvA oscillations appear to be well
described by the above model in which the CDW
plays the role of a reservoir damping the chemical
potential oscillations.

Honold et al.202 have reported on the observation
of the MB frequency Fâ ≈ 4250 T in the dHvA
spectrum obtained in pulsed fields of up to 60 T. This
would correspond to the orbit involving both the
cylindrical and planar parts of the FS. The situation
resembles that with κ-(BEDT-TTF)2Cu(NCS)2 (see
section 3.1.4), only the estimated MB field, BMB )
(70 ( 10) T, is much higher in the present case. Minor
contributions from the combination frequencies,
Fâ ( FR, have also been detected and attributed
tentatively to the effect of the chemical potential
oscillations in this highly 2D compound.202 However,
no details have been reported on these combination

frequencies probably because of their very low am-
plitudes.

3.4.3. κ-(BEDT-TTF)2Cu(NCS)2

As discussed in section 3.1.4, κ-(BEDT-TTF)2Cu-
(NCS)2 displays a variety of features associated with
the MB. Among them are the difference combination
frequencies Fâ - nFR which are not allowed in the
framework of the standard MB theory.22,198-201 Figure
30 demonstrates an example of the Fourier spectrum
of the dHvA oscillations in κ-(BEDT-TTF)2Cu(NCS)2
recorded at T ) 0.4 K in the field window between
20 and 27 T.282 The spectrum is dominated by the
contributions from the classical orbit R and from the
main MB orbit â. The peak at Fâ + FR can also be
attributed to the MB orbit consisting of the MB
â-loop plus classical R-loop. Besides, the peak at
the “forbidden” frequency Fâ - FR even exceeding the
one at Fâ + FR is present.

The straightforward fitting of the temperature-
dependent amplitude of the “â - R” oscillation by the
LK damping factor (eq 64) yields the cyclotron mass
parameter, µâ-R ) 8.5, which is heavier than the mass
at the â-orbit, µâ ≈ 7.210,282 This is in notable contrast
to the behavior of the difference frequency contribu-
tion in the oscillating magnetoresistance: in that case
the relation µâ-nR ≈ µâ - nµR was observed, in
accordance with the QI scenario211,212 (see eq 80 and
the discussion in section 3.1.4). On the other hand,
the temperature dependence of the magnetization
oscillations with the combination frequencies seems to
be consistent with the predictions for the dHvA effect
in multiple-band 2D systems as presented in section
3.3.4. For example, the calculations carried out by
Nakano264 for two independent (i.e. not coupled via
MB) 2D bands, R and â, predict that the amplitude
of the â - R oscillations decreases, with increasing
temperature, faster than those of the individual R
and â oscillations. If, in analogy with the 3D LK
formula, one characterizes the temperature depen-

Figure 29. (a) Numerically calculated magnetization for
the high-field state of R-(BEDT-TTF)2KHg(SCN)2 using the
parameters µ, τ, and nR determined experimentally.165,231

(b) Corresponding measured magnetization. The arrows
point to the appropriate axes. (Reproduced with permission
from ref 165. Copyright 1996 American Physical Society.)

Figure 30. Fast Fourier transformation of the dHvA
signal from κ-(BEDT-TTF)2Cu(NCS)2 measured at T ) 0.4
K in the field range from 20 to 27 T. A prominent peak at
the frequency Fâ-R ) Fâ - FR is seen. (Reproduced with
permission from ref 282. Copyright 1999 Elsevier Science-
Direct.)
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dence of the amplitude by some “effective mass” m*
(which of course must not coincide with the real
cyclotron mass in the 2D case), Nakano’s calcula-
tions264 yield mâ

/, mR
/ < mâ(R

/ < mâ
/ + mR

/. This result
agrees with the experimental data reported by Uji
et al.210 and Steep et al.282

While the multiple-independent-band mod-
els249-251,254,256-259 succeed in explaining the presence
of the “forbidden” frequencies, one has to take into
account the MB phenomenon in order to adequately
describe the oscillations in κ-(BEDT-TTF)2Cu(NCS)2.
The comparison between the models with and with-
out the MB was performed by Kishigi et al.254,257 In
particular, it was argued that two independent
mechanisms, namely, the MB and chemical potential
oscillations, provide out-of-phase contributions to the
(â + R)-frequency that lead to a decrease of the
amplitude with increasing the MB probability. At the
same time, the (â - R)-frequency is not explicitly
affected by the MB. As a result, the amplitude of the
(â + R) oscillations, dominating in the multiple-
independent-band model, may become smaller than
that of the “forbidden” frequency, (â - R), in the
actual case of the MB network. This relationship
between the two amplitudes is indeed found in the
experiment.282

With increasing temperature, the oscillations of the
chemical potential are rapidly suppressed, which
causes the rapid decrease of the (â - R) amplitude.
On the other hand, the MB mechanism is not
sensitive to temperature; therefore, the temperature
damping of the (â + R) oscillations should be consid-
erably slower than that of the (â - R) oscillations.This
explains the experimentally obtained relationship
between the “effective masses”: mâ+R

/ < mâ-R
/ .210,282

A further qualitative test of the validity of the
above models can be made by studying the depen-
dence of the oscillation amplitude on the field orien-
tation. As was mentioned in section 3.1.3, the Zeeman
spin-splitting effect leads to a periodic dependence
of the amplitude on the tilt angle. By tuning the
angle-dependent spin-splitting parameter, gµ(θ) )
gµ(0)/cos θ, to an odd integer value, 2n + 1, one
reaches the spin-zero condition for the fundamental
harmonic (see eq 69). If, in our case, the field
direction is set to a spin zero of one of the funda-
mental harmonics, FR or Fâ, the contribution of this
harmonic to the chemical potential oscillations van-
ishes. This should lead to the disappearance of the
“forbidden” (â - R)-frequency. However, the (â + R)-
frequency should persist, being still contributed by
the standard MB mechanism. Moreover, its ampli-
tude may even become enhanced due to the absence
of the out-of-phase contribution from the chemical
potential oscillations. In the present compound, the
spin zero for the harmonic Fâ corresponds to the tilt
angle θ ≈ 34°.203,283 Indeed, at this orientation the
“forbidden” frequencies Fâ - FR and Fâ - 2FR were
found to vanish whereas the combination Fâ + FR
persisted and probably even had a small local maxi-
mum.283

The contributions of the higher harmonics of the
fundamental frequency FR to the Fourier spectrum
in Figure 30 are quite small: the height of the peak

at 2FR is less than 5% of that at FR; the third
harmonic is even not resolved in the present scale.
This, however, is not an argument for the validity of
the 3D LK model. As shown by Itskovsky,258 the
presence of more than one Landau-quantized band
leads to a suppression of the higher harmonics even
in strongly 2D systems. In fact, one band in the
multiple-band system plays the role of the electron
reservoir for the other, thus damping the chemical
potential oscillations, in a way similar to that dis-
cussed in section 3.3.3 for the case of coexisting 2D
and q1D bands. Of course, now one has to take into
account the Landau quantization of both bands.

The 2D character of the dHvA effect in the present
compound is also reflected in the temperature de-
pendence of the second harmonic amplitudes. Like
it was for the two compounds described above, the
“effective masses” derived from the LK analysis of
the second harmonic amplitudes, A2R and A2â, are
much lower than those found from the fundamental
harmonics.203,210,283 At fields above 24 T, the ampli-
tude of the harmonic A2R has even been found to
decrease with decreasing temperature.283 Such a
behavior drastically contrasts the LK predictions but
is consistent with the 2D models taking into account
the chemical potential oscillations (see, e.g., ref 258).

It should be noted that besides the above-men-
tioned models there are a few other theories propos-
ing the existence of the “forbidden” frequencies. Kim,
Brooks, and co-workers284-286 have suggested these
frequencies to be a consequence of a nonlinear field
dependence of the quantized magnetic subbands due
to nonparabolicity of the realistic band structure.
They argued285 that the difference frequencies even
persist (though become smaller) in the case of a fixed
chemical potential. However, the field range used by
those authors for the numerical simulations (g400
T for the present compound) is comparable to the
quantum limit for at least one of the bands and by
far exceeds the fields used in the described experi-
ments.

Another explanation of the “forbidden” frequencies
in κ-(BEDT-TTF)2Cu(NCS)2 has been proposed by
Gvozdikov et al.,287 who calculated the field-induced
modification of the energy spectrum of a 2D system
in a linear-chain MB network configuration like that
shown in Figure 19. The width and positions of the
Landau subbands originating from the main MB
orbit â have been shown to oscillate with the fre-
quency FR, leading to the combination frequencies
such as Fâ ( FR. As a physical reason, it is suggested
that the small classical orbits R play the role of
“switches” for the interconnected MB orbits â, acting
in a way analogous to the Stark quantum interfer-
ometer. The model287 was demonstrated to fit quite
well to the dHvA oscillations observed in experiments
at two temperatures, 1.3 and 0.4 K. A further, more
systematic comparison between the theory and the
experimentally obtained field and temperature de-
pendence of different harmonics is highly desirable.
In particular, it would be interesting to check the
prediction of the model287 about the existence of a
weak field-dependent shift of the MB frequencies. Of
course, it is possible that more than one of the
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mentioned mechanisms are actually responsible for
the “forbidden” frequencies observed in κ-(BEDT-
TTF)2Cu(NCS)2.

3.5. SdH Effect in Layered Metals
The examples presented in section 3.2 indicate

strong deviations of the SdH oscillations in organic
conductors from the predictions of the standard 3D
theory. Unfortunately, by contrast to the dHvA effect,
a comprehensive theory of the SdH effect in q2D
metals is still lacking. The main problem is that the
quantum oscillations of magnetoresistance crucially
depend on details of the charge transfer and scatter-
ing processes, whose nature in the organic conductors
is far from being well understood. Nevertheless, a
number of recent theoretical works67,145,165,288-293 have
provided a basis for at least a qualitative under-
standing of some prominent anomalies of the SdH
oscillations observed in the experiment.

Here we will restrict our consideration to the
magnetoresistance measured perpendicular to the
highly conducting plane, which is the usual config-
uration in experiments on the layered organic con-
ductors (see, e.g., section 2). Of course, to describe
the metallic conductivity across the layers, one has
to take into account the finite interlayer coupling.
Therefore, we will introduce, as usual, the interlayer
transfer integral t⊥ and assume the electron spectrum
in a high magnetic field to have the form

We will consider two different cases characterized by
different scales of the ratio between the interlayer
bandwidth W⊥ ) 4t⊥ and the cyclotron energy pωc.
First, the case of a relatively strong interlayer
coupling, when the ratio W⊥/(pωc) is bigger (though
not much bigger!) than unity, will be discussed. Then,
the highly-2D limit, W⊥/(pωc) , 1, will be briefly
considered.

3.5.1. Relatively Strong Interlayer Coupling

Figure 31 shows an example of the oscillating
interlayer resistance of â-(BEDT-TTF)2IBr2.67 At the
lowest temperature, rapid SdH oscillations, F = 3900
T, of a rather small amplitude (∼1% of the back-
ground resistance at B = 14 T) are observed, basically
resembling the behavior of the dHvA oscillations
presented in section 3.1.1. In particular, one can see
clear beats with the frequency Fbeat ) ∆F/2 = 20 T
(where ∆F is defined by eq 58), in accordance with
the significant warping of the FS: ∆S/S = 10-2. In
the given field range, the ratio between the interlayer
bandwidth and the cyclotron energy, W⊥/(pωc) ) ∆F/
B, varies between approximately 6 and 3. Hence, the
FS is intersected by several Landau levels at a fixed
field. The dHvA effect is still quite well described by
the 3D LK model under this condition. By contrast,
the SdH effect already displays some distinct anoma-
lies.

The most prominent anomaly is the slow oscilla-
tions which are clearly seen in Figure 31. The
frequency of these oscillations, Fslow ≈ 42 T, is about

100 times smaller than the fundamental frequency.
Their amplitude is virtually independent of temper-
ature: it is almost the same at T ) 0.56 and 1.4 K
whereas the fundamental oscillations are greatly
suppressed at 1.4 K.

While the existence of the slow oscillations in the
present compound has been established already in
the first works on the SdH effect,24,38 their nature
remained unsolved till very recently. No small FS
pockets which could give rise to the low-frequency
SdH oscillations have been revealed by the band
structure calculations.20,294,295 Similar slow oscilla-
tions of unclear origin have been reported for a
number of other organic conductors, for example,
â-(BEDT-TTF)2I3,296,297 κ-(BEDT-TTF)2Cu2(CN)3,298

κ-(BETS)2C(CN)3,299 and κ-(BETS)2FeBr4.187,188

A clue for solving the problem is given by the
angular dependence of the frequency Fslow(θ) shown
in the inset in Figure 31. By contrast to the funda-
mental frequency having the usual 1/cos θ depen-
dence, the low frequency displays a highly nonmono-
tonic behavior which is practically identical to that
of the beat frequency (see Figure 16b in section
3.1.1): it vanishes at the angles corresponding to the
AMRO peaks.67 Indeed, the comparison between the
frequencies of the slow oscillations and of the beats
given in the inset in Figure 31 reveals the relation-
ship Fslow(θ) ≈ 2Fbeat(θ). Thus, one can conclude that,
like the beats of the rapid SdH oscillations, the slow
oscillations originate from the warping of the FS
cylinder.

The mechanism responsible for the slow oscilla-
tions can be clarified by analyzing the semiclassical
Boltzmann transport equation for the conductiv-
ity:67

ε(n,pz) ) pωc(n + 1/2) - 2t⊥ cos(pzd/p) (97)

Figure 31. Interlayer resistance of â-(BEDT-TTF)2IBr2 as
a function of magnetic field, at different temperatures.67

The fundamental SdH oscillations exhibit beats and are
superposed by slow oscillations. Inset: Angular dependence
of the slow oscillation frequency67 (solid squares) and of
the doubled beat frequency, 2Fbeat ) ∆F (open circles).
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where I(ε) ) ∑|vz(ε)|2 is the square of the interlayer
velocity summed over all states at the energy ε. The
only difference of this expression from eq 3 used for
calculating the classical conductivity consists of put-
ting the relaxation time τ to the integrand, since its
dependence on energy becomes essential due to the
Landau quantization. As mentioned in section 3.1.2,
the scattering probability and, hence, the scattering
rate, 1/τ, are proportional to the density of states,
which oscillates in magnetic field. On the other hand,
in the q2D case, when the cyclotron energy is com-
parable to the interlayer transfer integral, oscilla-
tions of the interlayer velocity and therefore of the
quantity I(ε) become important.165,291 It is the inter-
ference between the two oscillating factors, τ(ε) and
I(ε), which gives rise to the slow oscillations.

This can be illustrated by the following simplified
consideration. Keeping only the fundamental har-
monic, one can express the oscillating factors as234,300

and291

where the amplitudes of the fundamental oscillations,
ã and b̃, are slowly modulated due to the weak
warping of the FS. In our case, when the ratio
W⊥/(pωc) is bigger than unity, the amplitudes ã and
b̃ are proportional to cos[(2πFbeat/B) - (π/4)] and to
sin[(2πFbeat/B) - (π/4)], respectively. Then the product
of τ and I is

Here we used the identity cos2 x ) (1 + cos 2x)/2 and
neglected the second harmonic term (at the experi-
mental conditions67 it is eventually suppressed by the
temperature and Dingle damping factors). The sec-
ond term in eq 101 is responsible for the fundamental
frequency of the SdH oscillations. It is the product
ãb̃ in the last term in eq 101 which gives the slow
oscillations with the frequency Fslow ) 2Fbeat, in
agreement with the experiment.

Since the product ãb̃ does not contain the electron
energy, its contribution to the conductivity (eq 98) is
insensitive to the temperature smearing of the Fermi
distribution function f0(ε,T). Therefore, the amplitude
of the slow oscillations is not suppressed by the
temperature damping factor RT, by contrast to the
amplitude of the fundamental SdH harmonic. Indeed,
as shown in Figure 31, the amplitude of the slow
oscillations at T ) 1.4 K is about the same as at
0.56 K whereas the fundamental harmonic has
almost completely vanished at 1.4 K.

Further, the Dingle factor entering the amplitude
of the slow oscillations is different from the Dingle
factor of the fundamental harmonic. Since the slow

oscillations are independent of the electron energy
(hence, of the exact position of the chemical poten-
tial), the corresponding Dingle factor does not include
the effects of macroscopic spatial inhomogeneities of
the sample.67,292 It was found67 that the Dingle
temperature extracted from the field dependence of
the slow oscillation amplitude, TD

/ ≈ 0.15 K, is about
5 times smaller than the conventional Dingle tem-
perature TD determined from the fundamental har-
monic in â-(BEDT-TTF)2IBr2. This leads to the
conclusion that macroscopic spatial inhomogenei-
ties, such as internal strains or/and mosaic struc-
tures, play a dominant role in damping the funda-
mental quantum oscillations in the sample. By
contrast, the semiclassical transport relaxation time
τtr is mostly determined by pointlike scatterers and
can be extracted from the slow oscillations: τtr ≈
p/(2πkBTD

/ ) ≈ 8 × 10-12 s. This estimate is, in fact,
close to that obtained from the angular-dependent
semiclassical magnetoresistance (see section 2.2.2).

Another important result of the interference be-
tween the oscillations of the relaxation time and
interlayer velocity is a phase shift of the beats of the
fundamental SdH oscillations. As seen from eq 101,
the modulation of the fundamental amplitude is
determined by the difference (ã - b̃). The oscillations
of ã and b̃ are of the same frequency but shifted by
the phase factor =π/2.291 Consequently, the phase
factor of the resulting beats should have an inter-
mediate value, depending on the relative strength of
the contributions from the oscillating relaxation time
and velocity. The latter is determined by the ratio
pωc/t⊥.291 The explicit solution of the Boltzmann
transport equation (eq 98) yields the expression for
the first harmonic in the interlayer conductivity in
the form:291

where

Comparing this expression with eq 57 describing the
beating dHvA oscillations, we see that the beats of
the SdH oscillations are shifted by the phase, 0 <
φ < π/2, which depends on the FS warping and on
the magnetic field strength.

Figure 32 presents an example of the oscillating
magnetization and magnetoresistance of â-(BEDT-
TTF)2IBr2

291 (the slowly oscillating background has
been subtracted from the magnetoresistance data).
The beat nodes of the SdH oscillations are clearly
shifted from those of the dHvA oscillations. It should
be noted that similar and even larger shifts were
observed on other layered compounds, κ-(BEDT-
TTF)2Cu[N(CN)2]Br221 and (BEDT-TTF)4[Ni(dto)2].301

For the latter salt, a phase shift as large as π/2 was
reported. Certainly, so large a shift and, in particular,
its dependence on magnetic field must be taken into
account when one attempts to evaluate the FS
warping from the beating behavior.

σzz ) -e2∫τ(ε) I(ε)
df0

dε
dε (98)

τ(ε) ∝ 1 + ã cos(2π ε

pωc
) (99)

I(ε) ∝ 1 - b̃ cos(2π ε

pωc
) (100)

τ(ε) I(ε) ∝ 1 + (ã - b̃) cos(2π ε

pωc
) - ãb̃

2
(101)

σ̃zz
(1) ∝ cos[2π(FB - 1

2)] cos(2π∆F
2B

- π
4

+ φ) (102)

φ ) arctan( pωc

2πt⊥
) ) arctan( peB

2πmct⊥
) (103)
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The inset in Figure 32 shows that the phase
shift increases with increasing the field, as would
be expected from eq 103. The slope of the linear
fit to the data (dotted line) gives, according to
eq 103, the interlayer transfer integral: t⊥ = 0.12
meV. This is, however, more than 2 times lower than
the estimation based on the beat frequency, t⊥ )
epFbeat/(2mc) = 0.28 meV. The substitution of the
latter value into eq 103 leads to the dashed line in
Figure 32, which lies considerably below the experi-
mental points.

The discrepancy has been partially eliminated by
the quantum mechanical calculations292 based on the
Kubo formula. This technique yields an additional,
quantum correction to the oscillating conductivity
which leads to an increase of the argument of arctan
in eq 103 by a constant value depending on the ratio
between t⊥ and the Dingle temperature. With this
correction, the theoretical phase shift, represented
by the solid line in the inset to Figure 32, is in
reasonable agreement with the data at fields around
10 T. However, it is still too low, comparing to the
experiment at higher fields.

The theory291,292 predicts the phase shift to increase
toward the maximum value of π/2 with decreasing
the interlayer transfer integral. The latter can be
effectively diminished by setting the field orientation
to an AMRO maximum.41,46 Indeed, an increase of the
phase shift was experimentally observed at changing
the field direction toward an AMRO peak in â-(BEDT-
TTF)2IBr2.73 However, the value φ was found to
strongly exceed the theoretical maximum of π/2.

The presented results illustrate that, by contrast
to the dHvA effect, the SdH effect exhibits substantial
deviations from the conventional 3D behavior even

at a relatively strong interlayer coupling, when
W⊥/(pωc) > 1. In particular, slow oscillations arise as
a result of the interference between the oscillations
of the relaxation time and of the interlayer velocity.
These slow oscillations are not affected by the tem-
perature smearing of the Fermi edge and by spatial
variations of the chemical potential caused by the
sample inhomogeneity. As a result, they survive at
higher temperatures and lower fields, at which the
main SdH oscillations are completely suppressed.

Incidentally, besides the FS warping, any other
mechanism leading to a modulation of the amplitude
of the fundamental SdH harmonic is expected to give
rise to the slow oscillations due to the same interfer-
ence effect. For example, the slow oscillations ob-
served in κ-(BETS)2FeBr4

187,188 are most likely caused
by the field-dependent spin-splitting effect, leading
to a modulation of the main SdH oscillations as
discussed in section 3.1.3.

The existing theoretical models67,291,292 successfully
describe the new features, at least, on the qualitative
level. However, quantitative disagreements arise as
the ratio W⊥/(pωc) decreases, approaching unity.

3.5.2. Highly Two-Dimensional Limit
Despite the considerable amount of experimental

data on the SdH effect in the strongly 2D limit,
W⊥ , pωc (see section 3.2), only few attempts at their
theoretical description have been done so far. Here
we will present two examples of the comparison
between the experimentally observed SdH oscilla-
tions in highly 2D organic conductors and the existing
models.

The lower panel of Figure 33 shows the oscillatory
magnetoresistance in R-(BEDT-TTF)2NH4(SCN)4 mea-
sured at T ) 0.4 K by Sandhu et al.229 This compound
is isostructural to the discussed above R-(BEDT-
TTF)2KHg(SCN)4 salt and presents the same FS

Figure 32. Oscillating magnetization (left scale) and
interlayer magnetoresistance (right scale) of â-(BEDT-
TTF)2IBr2 at T ) 0.4 K and θ ≈ 14.8°. Data from ref 291.
Inset: Tangent of the phase shift between the node
positions in the SdH and dHvA signals as a function of
magnetic field.291 The dotted line is the linear fit to the
data. The dashed and solid lines represent the expected
field dependence obtained with the semiclassical transport
equation291 and with the quantum mechanical Kubo for-
mula,292 respectively.

Figure 33. (a) Numerical simulations165 of the SdH
oscillations in R-(BEDT-TTF)2NH4Hg(SCN)2 at T ) 0.4 K
based on the Boltzmann transport equation with the
parameters F ) 595 T, mc ) 3me, τ ) 1.2 × 10-12 s, nR )
0.4. (b) SdH effect in the interlayer resistance of the
same compound measured229 at T ) 0.4 K. Note that
the resistance peaks at integer filling factors F/B )
εF/pωc ) n.
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topology: a cylindrical FS plus a pair of open sheets
(Figure 1d). By contrast to the latter, it does not
undergo the density-wave transition, so that its FS
remains unchanged at all temperatures. The SdH
oscillations originate from the FS cylinder occupying
≈14% of the Brillouin zone. No beats have been
observed down to at least 6 T.25,302 Thus, the warping
of the FS is smaller than the spacing between the
Landau tubes above 6 T. The field range of Figure
33, therefore, corresponds to the highly 2D limit.
Indeed, the oscillations here are characterized by a
very high amplitude and a strongly unharmonic wave
form.

To model these oscillations, Harrison et al.165 have
performed a numerical simulation based on the
Boltzmann transport equation. Oscillations of the
chemical potential in the presence of the electron
reservoir provided by the nonquantized q1D band
were taken into account in the way described in
section 3.3.3. The results are shown in the upper
panel of Figure 33. One can see that, in agreement
with the experiment, the magnetoresistance exhibits
sharp peaks at integer filling numbers, εF/(pωc) ) n,
that is, when the chemical potential is situated in
the middle between the Landau levels. The ampli-
tude of the oscillations and its field dependence are
also quite well reproduced by the calculations. More-
over, the model165 successfully describes the experi-
mentally observed (see Figure 24, section 3.2) dra-
matic increase of the apparent cyclotron mass with
increasing the field.

One can notice, however, that the calculated curve
has a considerably more rounded shape near the
minima of the magnetoresistance. Furthermore, the
reservoir strength used for the calculations, nR )
D1D/D0

2D ) 0.4, is significantly lower than the value
obtained more recently from the dHvA data,303 nR ≈
2.0. As discussed in section 3.3.3, the reservoir states
play an important role in stabilizing the chemical
potential and thus strongly affect the wave form of
the quantum oscillations. A substitution of the higher
nR in the model165 would lead to a further broadening
of the resistance peaks and, hence, to a stronger
disagreement with the experiment.

To achieve a better agreement, one should likely
apply the quantum transport theory instead of the
semiclassical Boltzmann equation. The quantum
correction to the conductivity was argued292 to be
significant already in the case of a relatively strong
interlayer coupling. In the highly 2D limit it becomes
even more important, as will be demonstrated in the
following example.

Figure 34 shows the interlayer magnetoresistance
of â′′-(BEDT-TTF)2SF5CH2CF2SO3 measured274 as a
function of magnetic field at different temperatures
ranging from 4.0 K down to 0.59 K. The SdH oscil-
lations here definitely correspond to the highly 2D
regime. Indeed, the interlayer bandwidth W⊥ in this
compound is estimated150 to be lower than 10-2 meV.
This is much smaller than the Landau level separa-
tion in fields above 20 T (pωc ≈ 1.2 meV at B )
20 T). Furthermore, the scattering induced broaden-
ing of Landau levels, p/τ ) 0.44 meV,274 strongly
exceeds the interlayer bandwidth, making the influ-

ence of the latter on the shape of the levels negligible.
As a result, the oscillations of the interlayer conduc-
tivity are entirely governed by the quantized motion
within the 2D plane;165,293 the interlayer coupling only
determines the zero-field conductivity σzz(B ) 0),
which is simply a constant scaling factor for σzz(B) )
1/Fzz(B).

The oscillations shown in Figure 34 are character-
ized by a very high amplitude rapidly growing with
the field. Remarkably, the resistance at the maxima
of the oscillations increases exponentially with de-
creasing the temperature. The inset in Figure 34
shows ln(σzz) ) -ln(Fzz) at these points versus 1/T.
The data are well described by the thermal activation
law274

at temperatures between 1.4 and 4.0 K.
The activation behavior has been initially at-

tributed to a gap in the density of states developing
due to the Landau quantization in this highly 2D
material. This interpretation, however, has not been
supported by quantitative arguments. A more rig-
orous analysis has been done by Champel and
Mineev,277,293 who performed the quantum mechan-
ical calculation of the oscillating interlayer conduc-
tivity in a q2D metal at W⊥ , pωc. They have shown
that the conductivity can be expressed as

where σB(ε) and σQ(ε) are respectively the semiclas-
sical (Boltzmann) and purely quantum contributions
to the total spectral conductivity σ(ε). At a relatively
strong warping of the FS, W⊥ > pωc, or in the dirty
limit, ωcτ < 1, when the broadening of Landau levels
is bigger than the distance between adjacent levels,
the quantum term σQ gives a negligibly small cor-

Figure 34. Strong SdH effect in the interlayer resistance
of â′′-(BEDT-TTF)2SF5CH2CF2SO3 measured at the follow-
ing temperatures, from the top: 0.59, 0.94, 1.48, 1.58, 1.91,
2.18, 2.68, 3.03, 3.38, 3.80, and 4.00 K. Inset: Logarithmic
plot of the conductivity against inverse temperature at the
magnetoresistance peaks close to the following integer
filling numbers n, from the bottom: n ) 4, 5, 6, 7, and 8.
The data reveal the activation behavior (eq 104) at tem-
peratures between 1.4 and 4.0 K. Data from ref 274.

σzz ∝ exp(- ∆
kBT) (104)

σzz ) ∫[σB(ε) + σQ(ε)](- df0(ε)
dε ) dε (105)

5776 Chemical Reviews, 2004, Vol. 104, No. 11 Kartsovnik



rection. The weak SdH oscillations can be quite well
described by the semiclassical equation (eq 98). In
particular, the simple relation between the SdH and
dHvA oscillations, σ̃zz ∝ B2(dM̃/dB), like in the
conventional 3D case, remains valid. However, when
ωcτ > π, both the Boltzmann and the quantum
contributions are of the same order of magnitude.293

Figure 35 shows the SdH oscillations of the inter-
layer resistivity calculated on the basis of the model293

with the substitution of the experimentally deter-
mined parameters: F ) 200 T, mc ) 1.96me, τ )
1.2 × 10-12 s, characteristic of the sample measured
in ref 274. The theoretical temperature dependence
at the resistivity peaks shown in the inset is in
excellent agreement with the experimental data. To
explain this behavior, it was noted277,293 that, at the
fields above 20 T, the clean limit, ωcτ > π, is realized
for this compound and a pseudogap develops in the
spectral conductivity: the quantum term σQ almost
exactly cancels the semiclassical term σB at energies
around ε ) npωc. This leads to a dramatic increase
of the resistivity at the fields at which the chemical
potential resides between the Landau levels, that is,
in the vicinity of the integer fillings, εF/(pωc) ) n. At
a finite temperature, the main contribution to the
conductivity at such fields comes from the thermal
excitation of quasiparticles at the edge of the
pseudogap. At very low temperatures the small
difference between |σB| and |σQ| is manifested in the
saturation of the conductivity.

The calculations leading to the curves in Figure 35
have been made with the assumption of negligibly
small chemical potential oscillations. This assump-
tion is justified by the analysis of the dHvA oscilla-
tions,232,275 as discussed in section 3.4.1. It should be
noted that the model293 gives reasonable results only
under the condition of a finite electron reservoir,
nR > 0, which serves to stabilize the chemical
potential ú between Landau levels. In the absence of
a reservoir, that is, when ú is always pinned to the
highest occupied Landau level, the theory fails to
correctly describe the field-dependent density of
states. The reason, as pointed out by the authors,293

is that the model restricts the consideration of the
scattering processes to those on pointlike scatterers
only. It is possible that some disagreements between

the theory and experiment (e.g., in the low-temper-
ature behavior of the resistivity minima) are caused
by this limitation. To develop a consistent theory
taking into account specific contributions of the finite-
range scattering in the material is a very difficult
task and remains a challenging problem for future
work.

4. Conclusion
This review is focused on the high-magnetic-field

properties in the normal metallic state of layered
organic conductors, avoiding complications related to
various unusual electronic states. In particular, we
did not touch the very interesting problem of phase
transitions in a magnetic field, for example, the well-
known field-induced SDW transitions1,76 or recently
observed field-induced CDW transitions.280,304 Nev-
ertheless, even in the normal metallic state these
materials exhibit highly unusual behavior qualita-
tively different from that of conventional metals.

The key property underlying this behavior is the
extremely high anisotropy of the electronic system.
Relatively simple FS topologies in conjunction with
typically very high crystal quality make the organic
conductors ideal model objects for studying general
physical phenomena characteristic of low-dimen-
sional systems. In principle, the high-field effects
presented here should also be observable in other
types of q2D conductors such as, for example, super-
conducting and magnetic metal oxides, provided the
sample quality is high enough. As mentioned at the
end of section 2.2.1, the AMRO effect has already
been found in a number of inorganic q2D materials.

The new phenomena introduced in this article
prove high-magnetic-field experiments to be an ex-
ceptionally powerful tool in studying the FSs of the
organic conductors.

The various oscillatory effects displayed by the
semiclassical magnetoresistance, as the field is ro-
tated with respect to the crystal axes, provide a direct
means of precise determination of the size and shape
of the FS. The warping of the FS in the least
conducting direction determined by the interlayer
transfer integral can be estimated from the magne-
toresistance behavior at fields slightly tilting out of
the highly conducting plane. Additionally to the dc
magnetotransport, high-frequency (millimeter-wave)
electrodynamics in high magnetic fields turns out to
be very useful in studying the shape of the FS and
other electronic parameters, such as cyclotron mass
and Fermi velocity.

The peak feature observed in the angle-dependent
dc magnetoresistance appears to be a good test for
the coherence of the interlayer charge transport. It
should be noted, however, that the behavior of the
q2D conductors in the incoherent regime is not fully
understood at present. It is possible that this behav-
ior has a common nature with that observed on q1D
conductors and associated77 with field-induced devia-
tions from the Fermi liquid model.

The magnetic quantum oscillations provide impor-
tant complementary information on the electronic
system in the organic conductors. The amplitude of
the oscillations is generally strongly enhanced as

Figure 35. Theoretical simulations of the data in Figure
34 based on the quantum mechanical model. (Reproduced
with permission from ref 293. Copyright 2002 American
Physical Society.)
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compared to 3D metals, making them easier to
observe in the experiment. One should, however, take
care when applying the standard 3D theory for
analyzing the data. When the Landau level separa-
tion becomes comparable with or exceeds the inter-
layer bandwidth, the oscillations may significantly
violate the conventional behavior and the low-
dimensional nature of the conduction electrons should
be explicitly taken into account. The theoretical
models developed for 2D and q2D metals provide a
consistent picture of the dHvA effect which, in
principle, can be used for a quantitative analysis of
the magnetization oscillations in layered organic
metals. By contrast, the theoretical description of the
q2D SdH effect has not yet been as successful. The
reason is that the quantum oscillations of magne-
toresistance crucially depend on details of the charge
transfer and scattering processes, whose nature in
the organic conductors is far from being well studied.
Nevertheless, considerable progress has been re-
cently achieved in at least the qualitative under-
standing of some remarkable anomalies of the SdH
effect displayed by these materials.
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(9) Bourbonnais, C.; Jérome, D. In Advances in Synthetic Metals:

Twenty Years of Progress in Science and Technology; Bernier,
P., Lefrant, S., Bidan, G., Eds.; Elsevier: Amsterdam, The
Netherlands, 1999; p 206.
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